stefan-it's picture
readme: update model hub links
f34e4e2
---
language: de
license: mit
tags:
- flair
- token-classification
- sequence-tagger-model
base_model: dbmdz/bert-base-historic-multilingual-cased
widget:
- text: Es war am 25sten , als Lord Corn wollis Dublin mit seinem Gefolge und mehrern
Truppen verließ , um in einer Central - Lage bey Sligo die Operationen der Armee
persönlich zu dirigiren . Der Feind dürfte bald in die Enge kommen , da Gen .
Lacke mit 6000 Mann ihm entgegen marschirt .
---
# Fine-tuned Flair Model on German HIPE-2020 Dataset (HIPE-2022)
This Flair model was fine-tuned on the
[German HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md)
NER Dataset using hmBERT as backbone LM.
The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found
[here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21).
The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`.
# Results
We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:
* Batch Sizes: `[8, 4]`
* Learning Rates: `[3e-05, 5e-05]`
And report micro F1-score on development set:
| Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. |
|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|
| bs4-e10-lr3e-05 | [0.7876][1] | [0.7978][2] | [0.7803][3] | [0.7859][4] | [0.7907][5] | 78.85 ± 0.58 |
| bs8-e10-lr3e-05 | [0.7904][6] | [0.7884][7] | [0.7876][8] | [0.783][9] | [0.7894][10] | 78.78 ± 0.26 |
| bs8-e10-lr5e-05 | [0.7939][11] | [0.7859][12] | [0.7825][13] | [0.7849][14] | [0.7853][15] | 78.65 ± 0.39 |
| bs4-e10-lr5e-05 | [0.7943][16] | [0.786][17] | [0.7834][18] | [0.7824][19] | [0.7736][20] | 78.39 ± 0.67 |
[1]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[2]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[3]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[4]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[5]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
[6]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[7]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[8]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[9]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[10]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
[11]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[12]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[13]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[14]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[15]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
[16]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[17]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[18]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[19]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[20]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
The [training log](training.log) and TensorBoard logs (only for hmByT5 and hmTEAMS based models) are also uploaded to the model hub.
More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).
# Acknowledgements
We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
[Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.
Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
Many Thanks for providing access to the TPUs ❤️