results2
This model is a fine-tuned version of MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli on the sem_eval_2024_task_2 dataset. It achieves the following results on the evaluation set:
- Loss: 2.1827
- Accuracy: 0.76
- Precision: 0.7601
- Recall: 0.76
- F1: 0.7600
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.6925 | 1.0 | 107 | 0.6665 | 0.6 | 0.6457 | 0.6 | 0.5660 |
0.6729 | 2.0 | 214 | 0.6025 | 0.69 | 0.6964 | 0.69 | 0.6875 |
0.6857 | 3.0 | 321 | 0.6071 | 0.665 | 0.7531 | 0.665 | 0.6331 |
0.6667 | 4.0 | 428 | 0.5650 | 0.695 | 0.7157 | 0.6950 | 0.6875 |
0.6168 | 5.0 | 535 | 0.5036 | 0.75 | 0.7504 | 0.75 | 0.7499 |
0.5165 | 6.0 | 642 | 0.6248 | 0.67 | 0.6701 | 0.67 | 0.6700 |
0.4087 | 7.0 | 749 | 0.5246 | 0.735 | 0.7379 | 0.7350 | 0.7342 |
0.3083 | 8.0 | 856 | 0.6130 | 0.7 | 0.7 | 0.7 | 0.7 |
0.2909 | 9.0 | 963 | 0.7584 | 0.735 | 0.7723 | 0.7350 | 0.7256 |
0.319 | 10.0 | 1070 | 0.7350 | 0.72 | 0.7360 | 0.72 | 0.7152 |
0.1812 | 11.0 | 1177 | 0.9320 | 0.715 | 0.7176 | 0.7150 | 0.7141 |
0.2824 | 12.0 | 1284 | 0.9723 | 0.705 | 0.7336 | 0.7050 | 0.6957 |
0.2662 | 13.0 | 1391 | 0.8676 | 0.72 | 0.7222 | 0.72 | 0.7193 |
0.1641 | 14.0 | 1498 | 0.9450 | 0.71 | 0.7103 | 0.71 | 0.7099 |
0.2264 | 15.0 | 1605 | 1.1613 | 0.675 | 0.6764 | 0.675 | 0.6743 |
0.2077 | 16.0 | 1712 | 1.3497 | 0.715 | 0.7214 | 0.7150 | 0.7129 |
0.1767 | 17.0 | 1819 | 1.4154 | 0.705 | 0.7075 | 0.7050 | 0.7041 |
0.1751 | 18.0 | 1926 | 1.2369 | 0.735 | 0.7350 | 0.735 | 0.7350 |
0.1195 | 19.0 | 2033 | 1.1152 | 0.72 | 0.7334 | 0.72 | 0.7159 |
0.0507 | 20.0 | 2140 | 1.4853 | 0.715 | 0.7152 | 0.715 | 0.7149 |
0.0544 | 21.0 | 2247 | 1.7174 | 0.725 | 0.7302 | 0.7250 | 0.7234 |
0.0648 | 22.0 | 2354 | 1.7327 | 0.71 | 0.7121 | 0.71 | 0.7093 |
0.0039 | 23.0 | 2461 | 1.8211 | 0.725 | 0.7268 | 0.7250 | 0.7244 |
0.0153 | 24.0 | 2568 | 1.8315 | 0.715 | 0.7176 | 0.7150 | 0.7141 |
0.0017 | 25.0 | 2675 | 1.7446 | 0.72 | 0.7232 | 0.72 | 0.7190 |
0.0188 | 26.0 | 2782 | 1.6413 | 0.72 | 0.7274 | 0.72 | 0.7177 |
0.0168 | 27.0 | 2889 | 1.8013 | 0.73 | 0.7315 | 0.73 | 0.7296 |
0.0355 | 28.0 | 2996 | 2.0405 | 0.725 | 0.7354 | 0.725 | 0.7219 |
0.0168 | 29.0 | 3103 | 1.5087 | 0.735 | 0.7350 | 0.735 | 0.7350 |
0.0409 | 30.0 | 3210 | 1.5272 | 0.72 | 0.7244 | 0.72 | 0.7186 |
0.004 | 31.0 | 3317 | 1.9978 | 0.715 | 0.7214 | 0.7150 | 0.7129 |
0.0002 | 32.0 | 3424 | 1.9760 | 0.72 | 0.7244 | 0.72 | 0.7186 |
0.0111 | 33.0 | 3531 | 1.9985 | 0.74 | 0.7409 | 0.74 | 0.7398 |
0.052 | 34.0 | 3638 | 1.9607 | 0.73 | 0.7334 | 0.73 | 0.7290 |
0.0263 | 35.0 | 3745 | 1.7118 | 0.75 | 0.7525 | 0.75 | 0.7494 |
0.0101 | 36.0 | 3852 | 1.9553 | 0.755 | 0.7571 | 0.755 | 0.7545 |
0.0001 | 37.0 | 3959 | 2.0064 | 0.75 | 0.7537 | 0.75 | 0.7491 |
0.0186 | 38.0 | 4066 | 2.1726 | 0.74 | 0.7404 | 0.74 | 0.7399 |
0.0046 | 39.0 | 4173 | 2.1083 | 0.755 | 0.7550 | 0.755 | 0.7550 |
0.0042 | 40.0 | 4280 | 1.9944 | 0.76 | 0.7609 | 0.76 | 0.7598 |
0.0178 | 41.0 | 4387 | 2.0096 | 0.76 | 0.7604 | 0.76 | 0.7599 |
0.0089 | 42.0 | 4494 | 2.0431 | 0.765 | 0.7652 | 0.765 | 0.7649 |
0.0095 | 43.0 | 4601 | 2.0662 | 0.76 | 0.7604 | 0.76 | 0.7599 |
0.0162 | 44.0 | 4708 | 2.1703 | 0.745 | 0.7450 | 0.745 | 0.7450 |
0.0001 | 45.0 | 4815 | 2.1525 | 0.76 | 0.7601 | 0.76 | 0.7600 |
0.0001 | 46.0 | 4922 | 2.1581 | 0.76 | 0.7601 | 0.76 | 0.7600 |
0.0086 | 47.0 | 5029 | 2.1665 | 0.76 | 0.7601 | 0.76 | 0.7600 |
0.0088 | 48.0 | 5136 | 2.1747 | 0.76 | 0.7601 | 0.76 | 0.7600 |
0.0044 | 49.0 | 5243 | 2.1812 | 0.76 | 0.7601 | 0.76 | 0.7600 |
0.0043 | 50.0 | 5350 | 2.1827 | 0.76 | 0.7601 | 0.76 | 0.7600 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 24
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for hongpingjun98/BioMedNLP_DeBERTa
Evaluation results
- Accuracy on sem_eval_2024_task_2validation set self-reported0.760
- Precision on sem_eval_2024_task_2validation set self-reported0.760
- Recall on sem_eval_2024_task_2validation set self-reported0.760
- F1 on sem_eval_2024_task_2validation set self-reported0.760