results2 / README.md
hongpingjun98's picture
Model save
88b4b8e verified
metadata
license: mit
base_model: MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
tags:
  - generated_from_trainer
datasets:
  - sem_eval_2024_task_2
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: results2
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: sem_eval_2024_task_2
          type: sem_eval_2024_task_2
          config: sem_eval_2024_task_2_source
          split: validation
          args: sem_eval_2024_task_2_source
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.715
          - name: Precision
            type: precision
            value: 0.7186959617536364
          - name: Recall
            type: recall
            value: 0.7150000000000001
          - name: F1
            type: f1
            value: 0.7137907659862921

results2

This model is a fine-tuned version of MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli on the sem_eval_2024_task_2 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7766
  • Accuracy: 0.715
  • Precision: 0.7187
  • Recall: 0.7150
  • F1: 0.7138

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.6998 1.0 107 0.6713 0.6 0.6214 0.6000 0.5815
0.7015 2.0 214 0.6502 0.68 0.7143 0.6800 0.6667
0.6755 3.0 321 0.6740 0.53 0.6579 0.53 0.4107
0.6605 4.0 428 0.6061 0.64 0.6502 0.64 0.6338
0.5918 5.0 535 0.5675 0.695 0.7023 0.6950 0.6922
0.5717 6.0 642 0.5945 0.685 0.6953 0.685 0.6808
0.4655 7.0 749 0.5644 0.68 0.6801 0.6800 0.6800
0.3407 8.0 856 0.7529 0.7 0.7029 0.7 0.6989
0.3539 9.0 963 0.7211 0.69 0.6901 0.69 0.6900
0.2695 10.0 1070 0.7760 0.685 0.6905 0.685 0.6827
0.1666 11.0 1177 1.1053 0.71 0.7188 0.71 0.7071
0.1648 12.0 1284 1.1662 0.72 0.7258 0.72 0.7182
0.1229 13.0 1391 1.2760 0.735 0.7438 0.735 0.7326
0.0737 14.0 1498 1.5943 0.7 0.7029 0.7 0.6989
0.1196 15.0 1605 1.5407 0.705 0.7085 0.7050 0.7037
0.0389 16.0 1712 1.6411 0.69 0.7016 0.69 0.6855
0.0199 17.0 1819 1.7139 0.685 0.6919 0.685 0.6821
0.0453 18.0 1926 1.6549 0.71 0.7121 0.71 0.7093
0.0536 19.0 2033 1.7612 0.71 0.7142 0.71 0.7086
0.0035 20.0 2140 1.7766 0.715 0.7187 0.7150 0.7138

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0