hc-impaired-all-v3 / README.md
honzapucalek's picture
End of training
786475d verified
metadata
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - honzapucalek/hc_impaired_all_v3
metrics:
  - wer
model-index:
  - name: hc-impaired-all-v3
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: honzapucalek/hc_impaired_all_v3 cs
          type: honzapucalek/hc_impaired_all_v3
          config: cs
          split: test
          args: cs
        metrics:
          - name: Wer
            type: wer
            value: 0.11072981011210249

hc-impaired-all-v3

This model is a fine-tuned version of openai/whisper-large-v3 on the honzapucalek/hc_impaired_all_v3 cs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3837
  • Wer: 0.1107

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0275 6.87 1000 0.2212 0.1163
0.0021 13.75 2000 0.3051 0.1123
0.0004 20.62 3000 0.3517 0.1113
0.0001 27.49 4000 0.3760 0.1104
0.0001 34.36 5000 0.3837 0.1107

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1