|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- ncbi_disease |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: biobert-base-cased-v1.2-finetuned-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: ncbi_disease |
|
type: ncbi_disease |
|
args: ncbi_disease |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8396334478808706 |
|
- name: Recall |
|
type: recall |
|
value: 0.8731387730792138 |
|
- name: F1 |
|
type: f1 |
|
value: 0.856058394160584 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9824805769647444 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# biobert-base-cased-v1.2-finetuned-ner |
|
|
|
This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the ncbi_disease dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0706 |
|
- Precision: 0.8396 |
|
- Recall: 0.8731 |
|
- F1: 0.8561 |
|
- Accuracy: 0.9825 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 340 | 0.0691 | 0.8190 | 0.7868 | 0.8026 | 0.9777 | |
|
| 0.101 | 2.0 | 680 | 0.0700 | 0.8334 | 0.8553 | 0.8442 | 0.9807 | |
|
| 0.0244 | 3.0 | 1020 | 0.0706 | 0.8396 | 0.8731 | 0.8561 | 0.9825 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.4 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.3.0 |
|
- Tokenizers 0.12.1 |
|
|