Edit model card

stool-condition-classification

This model is a fine-tuned version of google/vit-base-patch16-224 on the stool-image dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4237
  • Auroc: 0.9418
  • Accuracy: 0.9417
  • Sensitivity: 0.9091
  • Specificty: 0.9661
  • Ppv: 0.9524
  • Npv: 0.9344
  • F1: 0.9302
  • Model Selection: 0.9215

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Auroc Accuracy Sensitivity Specificty Ppv Npv F1 Model Selection
0.5076 0.98 100 0.5361 0.8538 0.7731 0.5393 0.9801 0.96 0.7061 0.6906 0.5592
0.4086 1.96 200 0.4857 0.8728 0.7836 0.6011 0.9453 0.9068 0.7280 0.7230 0.6558
0.5208 2.94 300 0.5109 0.8059 0.7599 0.6124 0.8905 0.8321 0.7218 0.7055 0.7218
0.474 3.92 400 0.5212 0.8601 0.7995 0.6180 0.9602 0.9322 0.7395 0.7432 0.6578
0.4285 4.9 500 0.4511 0.8728 0.7757 0.7472 0.8010 0.7688 0.7816 0.7578 0.9462
0.3506 5.88 600 0.4716 0.8691 0.8047 0.6798 0.9154 0.8768 0.7635 0.7658 0.7644
0.4239 6.86 700 0.5043 0.8517 0.8100 0.6685 0.9353 0.9015 0.7611 0.7677 0.7332
0.2447 7.84 800 0.5804 0.8592 0.8074 0.6910 0.9104 0.8723 0.7689 0.7712 0.7806
0.1739 8.82 900 0.6225 0.8562 0.8074 0.7135 0.8905 0.8523 0.7783 0.7768 0.8229
0.2888 9.8 1000 0.5807 0.8570 0.8047 0.7528 0.8507 0.8171 0.7953 0.7836 0.9021

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.0.1
  • Datasets 2.14.7
  • Tokenizers 0.15.2
Downloads last month
218
Safetensors
Model size
85.8M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hossay/stool-condition-classification

Finetuned
(470)
this model

Spaces using hossay/stool-condition-classification 2

Evaluation results