Edit model card

ap-normistral-7b-sft-qlora

This model is a fine-tuned version of norallm/normistral-7b-warm on the hugodk-sch/aftonposten_title_sft dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6055

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
2.063 1.0 264 2.1618
1.2293 2.0 528 1.9121
0.6985 3.0 792 1.6916
0.4922 4.0 1056 1.6054
0.3396 5.0 1320 1.6055

Framework versions

  • PEFT 0.10.0
  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.1
Downloads last month
9
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for hugodk-sch/ap-normistral-7b-sft-qlora

Adapter
(2)
this model