|
--- |
|
license: llama3.1 |
|
language: |
|
- en |
|
inference: false |
|
fine-tuning: false |
|
tags: |
|
- nvidia |
|
- llama3.1 |
|
datasets: |
|
- nvidia/HelpSteer2 |
|
base_model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
--- |
|
# huihui-ai/Llama-3.1-Nemotron-70B-Instruct-HF-abliterated |
|
|
|
This is an uncensored version of [nvidia/Llama-3.1-Nemotron-70B-Instruct-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF) created with abliteration (see [this article](https://huggingface.co/blog/mlabonne/abliteration) to know more about it). |
|
|
|
Special thanks to [@FailSpy](https://huggingface.co/failspy) for the original code and technique. Please follow him if you're interested in abliterated models. |
|
|
|
|
|
## Usage |
|
You can use this model in your applications by loading it with Hugging Face's `transformers` library, |
|
If the desired result is not achieved, you can clear the conversation and try again: |
|
|
|
|
|
```python |
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
# Load the model and tokenizer |
|
model_name = "huihui-ai/Llama-3.1-Nemotron-70B-Instruct-HF-abliterated" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
# Initialize conversation context |
|
initial_messages = [ |
|
{"role": "system", "content": "You are a helpful assistant."} |
|
] |
|
messages = initial_messages.copy() # Copy the initial conversation context |
|
|
|
# Enter conversation loop |
|
while True: |
|
# Get user input |
|
user_input = input("User: ").strip() # Strip leading and trailing spaces |
|
|
|
# If the user types '/exit', end the conversation |
|
if user_input.lower() == "/exit": |
|
print("Exiting chat.") |
|
break |
|
|
|
# If the user types '/clean', reset the conversation context |
|
if user_input.lower() == "/clean": |
|
messages = initial_messages.copy() # Reset conversation context |
|
print("Chat history cleared. Starting a new conversation.") |
|
continue |
|
|
|
# If input is empty, prompt the user and continue |
|
if not user_input: |
|
print("Input cannot be empty. Please enter something.") |
|
continue |
|
|
|
# Add user input to the conversation |
|
messages.append({"role": "user", "content": user_input}) |
|
|
|
# Build the chat template |
|
tokenized_message = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=True, |
|
add_generation_prompt=True, |
|
return_tensors="pt", |
|
return_dict=True |
|
) |
|
|
|
# Generate a response from the model |
|
response_token_ids = model.generate( |
|
tokenized_message['input_ids'].cuda(), |
|
attention_mask=tokenized_message['attention_mask'].cuda(), |
|
max_new_tokens=4096, |
|
pad_token_id = tokenizer.eos_token_id |
|
) |
|
|
|
# Extract model output, removing special tokens |
|
generated_tokens = response_token_ids[:, len(tokenized_message['input_ids'][0]):] |
|
generated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] |
|
|
|
# Add the model's response to the conversation |
|
messages.append({"role": "assistant", "content": generated_text}) |
|
|
|
# Print the model's response |
|
print(f"Response: {generated_text}") |
|
|
|
``` |
|
|
|
|