ajati's picture
update model card
0d98cf9 verified
|
raw
history blame
6.7 kB
metadata
license: apache-2.0
metrics:
  - mse

PatchTSMixer model pre-trained on ETTh1 dataset

The PatchTSMixer is a lightweight and fast multivariate time series forecasting model with state-of-the-art performance on benchmark datasets. In this context, we offer a pre-trained PatchTSMixer model encompassing all seven channels of the ETTh1 dataset. This specific pre-trained model yields a Mean Squared Error (MSE) of 0.37 on the test split of the ETTh1 dataset.

For training and evaluating a PatchTSMixer model, you can refer to this notebook.

Model Details

The PatchTSMixer model was proposed in TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong and Jayant Kalagnanam.

PatchTSMixer is a lightweight time-series modeling approach based on the MLP-Mixer architecture. In this HuggingFace implementation, we provide PatchTSMixer’s capabilities to effortlessly facilitate lightweight mixing across patches, channels, and hidden features for effective multivariate time-series modeling. It also supports various attention mechanisms starting from simple gated attention to more complex self-attention blocks that can be customized accordingly. The model can be pretrained and subsequently used for various downstream tasks such as forecasting, classification and regression.

Model Description

TSMixer is a lightweight neural architecture exclusively composed of multi-layer perceptron (MLP) modules designed for multivariate forecasting and representation learning on patched time series. Our model draws inspiration from the success of MLP-Mixer models in computer vision. We demonstrate the challenges involved in adapting Vision MLP-Mixer for time series and introduce empirically validated components to enhance accuracy. This includes a novel design paradigm of attaching online reconciliation heads to the MLP-Mixer backbone, for explicitly modeling the time-series properties such as hierarchy and channel-correlations. We also propose a Hybrid channel modeling approach to effectively handle noisy channel interactions and generalization across diverse datasets, a common challenge in existing patch channel-mixing methods. Additionally, a simple gated attention mechanism is introduced in the backbone to prioritize important features. By incorporating these lightweight components, we significantly enhance the learning capability of simple MLP structures, outperforming complex Transformer models with minimal computing usage. Moreover, TSMixer’s modular design enables compatibility with both supervised and masked self-supervised learning methods, making it a promising building block for time-series Foundation Models. TSMixer outperforms state-of-the-art MLP and Transformer models in forecasting by a considerable margin of 8-60%. It also outperforms the latest strong benchmarks of Patch-Transformer models (by 1-2%) with a significant reduction in memory and runtime (2-3X).

Model Sources

Uses

This pre-trained model can be utilized for fine-tuning or evaluation with any Electrical Transformer dataset that shares the same channels as the ETTh1 dataset, namely: HUFL, HULL, MUFL, MULL, LUFL, LULL, OT. It is important to ensure that the data is normalized. For detailed information on data pre-processing, please refer to the paper or the demo.

How to Get Started with the Model

Use the code below to get started with the model.

Demo

Training Details

Training Data

ETTh1/train split. Train/validation/test splits are shown in the demo.

Training Hyperparameters

Please refer to the PatchTSMixer paper.

Speeds, Sizes, Times

Runtime and Memory comparison

Evaluation

Testing Data, Factors & Metrics

Testing Data

ETTh1/test split. Train/validation/test splits are shown in the demo.

Metrics

Mean Squared Error (MSE).

Results

Runtime and Memory comparison

Hardware

1 NVIDIA A100 GPU

Software

PyTorch

Citation

BibTeX:

@article{ekambaram2023tsmixer,
  title={TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting},
  author={Ekambaram, Vijay and Jati, Arindam and Nguyen, Nam and Sinthong, Phanwadee and Kalagnanam, Jayant},
  journal={arXiv preprint arXiv:2306.09364},
  year={2023}
}

APA:

Ekambaram, V., Jati, A., Nguyen, N., Sinthong, P., & Kalagnanam, J. (2023). TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting. arXiv preprint arXiv:2306.09364.