license: apache-2.0
license: apache-2.0
MoLM
MoLM is a collection of MoE-based language models ranging in scale from 4 billion to 8 billion parameters. This is the repository for the 8B pretrained model, converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom.
Model Usage To load the model, you need install the ModuleFormer package. Then you can load the model with the following code:
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, AutoModelForSequenceClassification
from moduleformer import ModuleFormerForCausalLM, ModuleFormerConfig, ModuleFormerForSequenceClassification
AutoConfig.register("moduleformer", ModuleFormerConfig)
AutoModelForCausalLM.register(ModuleFormerConfig, ModuleFormerForCausalLM)
AutoModelForSequenceClassification.register(ModuleFormerConfig, ModuleFormerForSequenceClassification)
tokenizer = AutoTokenizer.from_pretrained('ibm/MoLM-350M-4B')
model = AutoModelForCausalLM.from_pretrained('ibm/MoLM-350M-4B')
Model Details MoLM-350M-4B is a MoE-based language models. It has 4 billion parameters, but each input token will only use 350M parameteres during its inference. Thus, it's computationally equivelant to a 350M dense model. MoLM-700M-8B has 8 billion parameters and computationally equivelant to a 700M dense model. Both models are trained on 300 billion tokens from publicly available sources, with a learning rate of 3.0 x 10-4 and a global batch-size of 3M tokens.
Model Developers IBM
Variations MoLM comes in two different parameter sizes — 4B and 8B.
Input Models input text only.
Output Models generate text only.
Model Architecture MoLM is an auto-regressive language model that uses the ModuleFormer architecture. It has 16 attention modules in each attention layer and 32 MLP modules in each MLP layer. During inference, the model activate 2 modules in each layer for each token condition on the inputs. MoLM-350M-4B has 24 blocks and MoLM-700M-8B has 48 blocks.
Status This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
Research Paper "ModuleFormer: Modularity Emerges from Mixture-of-Experts"
Training Data
MoLM was pretrained on 300 billion tokens of data from publicly available sources.
Evaluation Results
In this section, we report the results for the MoLM-350M-4B and MoLM-700M-8B models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library.
Model | Latency | Memory | Throughput | Hellaswag | PIQA | ARC-e | ARC-c | OBQA |
---|---|---|---|---|---|---|---|---|
ms | GB | tokens/sec | acc | acc | acc | acc | acc | |
Pythia 410M | 554 | 25 | 59594 | 33.72 | 66.70 | 51.89 | 21.42 | 18.2 |
GPT-Neo 1.3B | 991 | 23 | 32857 | 38.66 | 71.11 | 56.19 | 23.12 | 21.4 |
Pythia 1.4B | 918 | 42 | 35559 | 40.41 | 70.84 | 60.52 | 26.11 | 22.2 |
MoLM-350M-4B | 497 | 27 | 71017 | 39.21 | 70.13 | 56.44 | 23.55 | 20.8 |
GPT-Neo 2.7B | 1737 | 35 | 18788 | 42.71 | 72.2 | 61.07 | 27.47 | 23.2 |
Pythia 2.8B | 2111 | 70 | 15522 | 45.34 | 73.99 | 64.35 | 29.35 | 23.8 |
MoLM-700M-8B | 939 | 38 | 37419 | 43.33 | 72.91 | 62.46 | 27.90 | 23.8 |
Model | TriviaQA | HumanEval | Wikitext | ||||
---|---|---|---|---|---|---|---|
0-shot | 1-shot | 5-shot | pass@1 | pass@10 | pass@100 | PPL | |
Pythia 410M | 2.32 | 5.02 | 6.42 | 1.20 | 3.85 | 9.98 | 20.09 |
GPT-Neo 1.3B | 5.24 | 8.01 | 9.74 | 3.62 | 6.87 | 14.50 | 16.16 |
Pythia 1.4B | 5.30 | 9.87 | 12.84 | 2.19 | 7.31 | 14.33 | 14.71 |
MoLM-350M-4B | 5.40 | 11.12 | 13.70 | 3.04 | 6.99 | 13.79 | 15.15 |
GPT-Neo 2.7B | 4.82 | 11.23 | 13.67 | 4.89 | 9.54 | 17.90 | 13.93 |
Pythia 2.8B | 7.38 | 15.58 | 18.98 | 4.91 | 11.76 | 21.54 | 12.68 |
MoLM-700M-8B | 11.47 | 16.73 | 20.75 | 5.51 | 12.58 | 20.40 | 12.97 |
Ethical Considerations and Limitations
MoLM is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, MoLM’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of MoLM, developers should perform safety testing and tuning tailored to their specific applications of the model.