Edit model card
YAML Metadata Error: "co2_eq_emissions.emissions" must be a number

XLMIndic Base Multiscript

This model is finetuned from this model on Soham Bangla News Classification task which is part of the IndicGLUE benchmark.

Model description

This model has the same configuration as the ALBERT Base v2 model. Specifically, this model has the following configuration:

  • 12 repeating layers
  • 128 embedding dimension
  • 768 hidden dimension
  • 12 attention heads
  • 11M parameters
  • 512 sequence length

Training data

This model was fine-tuned on Soham dataset that is part of the IndicGLUE benchmark.

Training procedure

Preprocessing

The texts are tokenized using SentencePiece and a vocabulary size of 50,000.

Training

The model was trained for 8 epochs with a batch size of 16 and a learning rate of 2e-5.

Evaluation results

See results specific to Soham in the following table.

IndicGLUE

Task mBERT XLM-R IndicBERT-Base XLMIndic-Base-Uniscript XLMIndic-Base-Multiscript (This Model)
Wikipedia Section Title Prediction 71.90 65.45 69.40 81.78 ± 0.60 77.17 ± 0.76
Article Genre Classification 88.64 96.61 97.72 98.70 ± 0.29 98.30 ± 0.26
Named Entity Recognition (F1-score) 71.29 62.18 56.69 89.85 ± 1.14 83.19 ± 1.58
BBC Hindi News Article Classification 60.55 75.52 74.60 79.14 ± 0.60 77.28 ± 1.50
Soham Bangla News Article Classification 80.23 87.6 78.45 93.89 ± 0.48 93.22 ± 0.49
INLTK Gujarati Headlines Genre Classification - - 92.91 90.73 ± 0.75 90.41 ± 0.69
INLTK Marathi Headlines Genre Classification - - 94.30 92.04 ± 0.47 92.21 ± 0.23
IITP Hindi Product Reviews Sentiment Classification 74.57 78.97 71.32 77.18 ± 0.77 76.33 ± 0.84
IITP Hindi Movie Reviews Sentiment Classification 56.77 61.61 59.03 66.34 ± 0.16 65.91 ± 2.20
MIDAS Hindi Discourse Type Classification 71.20 79.94 78.44 78.54 ± 0.91 78.39 ± 0.33
Cloze Style Question Answering (Fill-mask task) - - 37.16 41.54 38.21

Intended uses & limitations

This model is pretrained on Indo-Aryan languages. Thus it is intended to be used for downstream tasks on these languages. You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2.

How to use

Then you can use this model directly with a pipeline for masked language modeling:

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='ibraheemmoosa/xlmindic-base-multiscript')
>>> text = "রবীন্দ্রনাথ ঠাকুর এফআরএএস (৭ মে ১৮৬১ - ৭ আগস্ট ১৯৪১; ২৫ বৈশাখ ১২৬৮ - ২২ শ্রাবণ ১৩৪৮ বঙ্গাব্দ) ছিলেন অগ্রণী বাঙালি [MASK], ঔপন্যাসিক, সংগীতস্রষ্টা, নাট্যকার, চিত্রকর, ছোটগল্পকার, প্রাবন্ধিক, অভিনেতা, কণ্ঠশিল্পী ও দার্শনিক। ১৯১৩ সালে গীতাঞ্জলি কাব্যগ্রন্থের ইংরেজি অনুবাদের জন্য তিনি এশীয়দের মধ্যে সাহিত্যে প্রথম নোবেল পুরস্কার লাভ করেন।"
>>> unmasker(text)
[{'score': 0.34163928031921387,
  'token': 5399,
  'token_str': 'কবি',
  'sequence': 'রবীন্দ্রনাথ ঠাকুর এফআরএএস (৭ মে ১৮৬১ - ৭ আগস্ট ১৯৪১; ২৫ বৈশাখ ১২৬৮ - ২২ শ্রাবণ ১৩৪৮ বঙ্গাব্দ) ছিলেন অগ্রণী বাঙালি কবি, পন্যাসিক, সংগীতস্রষ্টা, নাট্যকার, চিত্রকর, ছোটগল্পকার, প্রাবন্ধিক, অভিনেতা, কণ্ঠশিল্পী ও দার্শনিক। ১৯১৩ সালে গীতাঞ্জলি কাব্যগ্রন্থের ইংরেজি অনুবাদের জন্য তিনি এশীয়দের মধ্যে সাহিত্যে প্রথম নোবেল পুরস্কার লাভ করেন।'},
 {'score': 0.30519795417785645,
  'token': 33436,
  'token_str': 'people',
  'sequence': 'রবীন্দ্রনাথ ঠাকুর এফআরএএস (৭ মে ১৮৬১ - ৭ আগস্ট ১৯৪১; ২৫ বৈশাখ ১২৬৮ - ২২ শ্রাবণ ১৩৪৮ বঙ্গাব্দ) ছিলেন অগ্রণী বাঙালি people, পন্যাসিক, সংগীতস্রষ্টা, নাট্যকার, চিত্রকর, ছোটগল্পকার, প্রাবন্ধিক, অভিনেতা, কণ্ঠশিল্পী ও দার্শনিক। ১৯১৩ সালে গীতাঞ্জলি কাব্যগ্রন্থের ইংরেজি অনুবাদের জন্য তিনি এশীয়দের মধ্যে সাহিত্যে প্রথম নোবেল পুরস্কার লাভ করেন।'},
 {'score': 0.29130080342292786,
  'token': 30476,
  'token_str': 'সাহিত্যিক',
  'sequence': 'রবীন্দ্রনাথ ঠাকুর এফআরএএস (৭ মে ১৮৬১ - ৭ আগস্ট ১৯৪১; ২৫ বৈশাখ ১২৬৮ - ২২ শ্রাবণ ১৩৪৮ বঙ্গাব্দ) ছিলেন অগ্রণী বাঙালি সাহিত্যিক, পন্যাসিক, সংগীতস্রষ্টা, নাট্যকার, চিত্রকর, ছোটগল্পকার, প্রাবন্ধিক, অভিনেতা, কণ্ঠশিল্পী ও দার্শনিক। ১৯১৩ সালে গীতাঞ্জলি কাব্যগ্রন্থের ইংরেজি অনুবাদের জন্য তিনি এশীয়দের মধ্যে সাহিত্যে প্রথম নোবেল পুরস্কার লাভ করেন।'},
 {'score': 0.031051287427544594,
  'token': 6139,
  'token_str': 'লেখক',
  'sequence': 'রবীন্দ্রনাথ ঠাকুর এফআরএএস (৭ মে ১৮৬১ - ৭ আগস্ট ১৯৪১; ২৫ বৈশাখ ১২৬৮ - ২২ শ্রাবণ ১৩৪৮ বঙ্গাব্দ) ছিলেন অগ্রণী বাঙালি লেখক, পন্যাসিক, সংগীতস্রষ্টা, নাট্যকার, চিত্রকর, ছোটগল্পকার, প্রাবন্ধিক, অভিনেতা, কণ্ঠশিল্পী ও দার্শনিক। ১৯১৩ সালে গীতাঞ্জলি কাব্যগ্রন্থের ইংরেজি অনুবাদের জন্য তিনি এশীয়দের মধ্যে সাহিত্যে প্রথম নোবেল পুরস্কার লাভ করেন।'},
 {'score': 0.002705035964027047,
  'token': 38443,
  'token_str': 'শিল্পীরা',
  'sequence': 'রবীন্দ্রনাথ ঠাকুর এফআরএএস (৭ মে ১৮৬১ - ৭ আগস্ট ১৯৪১; ২৫ বৈশাখ ১২৬৮ - ২২ শ্রাবণ ১৩৪৮ বঙ্গাব্দ) ছিলেন অগ্রণী বাঙালি শিল্পীরা, পন্যাসিক, সংগীতস্রষ্টা, নাট্যকার, চিত্রকর, ছোটগল্পকার, প্রাবন্ধিক, অভিনেতা, কণ্ঠশিল্পী ও দার্শনিক। ১৯১৩ সালে গীতাঞ্জলি কাব্যগ্রন্থের ইংরেজি অনুবাদের জন্য তিনি এশীয়দের মধ্যে সাহিত্যে প্রথম নোবেল পুরস্কার লাভ করেন।'}]

Limitations and bias

Even though we pretrain on a comparatively large multilingual corpus the model may exhibit harmful gender, ethnic and political bias. If you fine-tune this model on a task where these issues are important you should take special care when relying on the model to make decisions.

Contact

Feel free to contact us if you have any ideas or if you want to know more about our models.

BibTeX entry and citation info

@article{Moosa2022DoesTH,
  title={Does Transliteration Help Multilingual Language Modeling?},
  author={Ibraheem Muhammad Moosa and Mahmuda Akhter and Ashfia Binte Habib},
  journal={ArXiv},
  year={2022},
  volume={abs/2201.12501}
}
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train ibraheemmoosa/xlmindic-base-multiscript-soham