metadata
language:
- en
pipeline_tag: text-generation
datasets:
- nlpai-lab/databricks-dolly-15k-ko
- kyujinpy/KOR-OpenOrca-Platypus-v3
- KETI-AIR/kor_boolq
- heegyu/open-korean-instructions
Input Models input text only.
Output Models generate text only.
Base Model upstage/SOLAR-10.7B-Instruct-v1.0
Training Dataset
- nlpai-lab/databricks-dolly-15k-ko
- kyujinpy/KOR-OpenOrca-Platypus-v3
- heegyu/open-korean-instructions
- KETI-AIR/kor_boolq
- AIhub μν λ²μ λ°μ΄ν° μΌλΆ
Implementation Code
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "ifuseok/sft-solar-10.7b-v1.1"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
Prompt Example
### System:
μμ€ν
λ©μμ§ μ
λλ€.
### User:
μ μ μ
λλ€.
### Assistant
μ΄μμ€ν΄νΈ μ
λλ€.