Edit model card

rinko_300_labeling

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0068

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
2.3912 0.9897 48 2.2464
2.2442 2.0 97 2.1167
2.1047 2.9897 145 2.0317
2.05 4.0 194 2.0067
2.0626 4.9485 240 2.0068

Framework versions

  • PEFT 0.7.1
  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
7
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ikno/rinko_300_labeling

Adapter
(615)
this model