imdatta0's picture
qwen-final-databricks/databricks-dolly-15k
c2a8840
|
raw
history blame
2.71 kB
metadata
base_model: Qwen/Qwen-14B
tags:
  - generated_from_trainer
model-index:
  - name: final_databricks_databricks-dolly-15k
    results: []

final_databricks_databricks-dolly-15k

This model is a fine-tuned version of Qwen/Qwen-14B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6083

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 132
  • total_train_batch_size: 264
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 0.01
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.694 0.04 2 1.8016
1.6398 0.07 4 1.7369
1.6421 0.11 6 1.6886
1.579 0.15 8 1.6596
1.5589 0.18 10 1.6420
1.5944 0.22 12 1.6305
1.5314 0.26 14 1.6274
1.5841 0.29 16 1.6238
1.5945 0.33 18 1.6229
1.5755 0.37 20 1.6234
1.5527 0.4 22 1.6231
1.6121 0.44 24 1.6224
1.586 0.48 26 1.6219
1.5995 0.52 28 1.6213
1.5942 0.55 30 1.6200
1.5738 0.59 32 1.6180
1.5825 0.63 34 1.6161
1.5183 0.66 36 1.6137
1.5964 0.7 38 1.6120
1.623 0.74 40 1.6105
1.5783 0.77 42 1.6098
1.6046 0.81 44 1.6093
1.5157 0.85 46 1.6088
1.5317 0.88 48 1.6086
1.5578 0.92 50 1.6086
1.5402 0.96 52 1.6084
1.5616 0.99 54 1.6083

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.1.0
  • Datasets 2.14.7
  • Tokenizers 0.13.3