model documentation

#1
by nazneen - opened
Files changed (1) hide show
  1. README.md +160 -10
README.md CHANGED
@@ -1,11 +1,161 @@
1
- ---
2
- language: en
3
- license: cc-by-nc-sa-4.0
4
- tags:
5
- - layoutlm
6
- - document-classification
7
- - pdf
8
- - invoices
9
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
- TODO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model Card for LayoutLM for Document Classification
2
+
3
+ # Model Details
4
+
5
+ ## Model Description
6
+
7
+ This is a fine-tuned version of the multi-modal LayoutLM model for the task of classification on documents.
8
+
9
+
10
+ - **Developed by:** Impira team
11
+ - **Shared by [Optional]:** Hugging Face
12
+ - **Model type:** Text Classification
13
+ - **Language(s) (NLP):** en
14
+ - **License:** cc-by-nc-sa-4.0
15
+ - **Related Models:** layoutlm
16
+ - **Parent Model:** More information needed
17
+ - **Resources for more information:**
18
+ - [Associated Paper](https://arxiv.org/abs/1912.13318)
19
+ - [Blog Post](https://www.impira.com/blog/introducing-instant-invoices)
20
+
21
+ # Uses
22
+
23
+
24
+ ## Direct Use
25
+
26
+ Text Classification
27
+
28
+ ## Downstream Use [Optional]
29
+
30
+ More information needed
31
+
32
+ ## Out-of-Scope Use
33
+
34
+ The model should not be used to intentionally create hostile or alienating environments for people.
35
+ # Bias, Risks, and Limitations
36
+
37
+
38
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
39
+
40
+
41
+ ## Recommendations
42
+
43
+
44
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
45
+
46
+
47
+ # Training Details
48
+
49
+ ## Training Data
50
+
51
+ More information needed
52
+
53
+ ## Training Procedure
54
+
55
+ More information needed
56
+
57
+ ### Preprocessing
58
+
59
+ More information needed
60
+
61
+ ### Speeds, Sizes, Times
62
+
63
+ Num_attention_head: 12
64
+ Num_hidden_layer:12,
65
+ Vocab_size: 30522
66
+
67
+ # Evaluation
68
+
69
+ ## Testing Data, Factors & Metrics
70
+
71
+ ### Testing Data
72
+
73
+ More information needed
74
+
75
+ ### Factors
76
+ More information needed
77
+
78
+ ### Metrics
79
+
80
+ More information needed
81
+
82
+ ## Results
83
+
84
+ More information needed
85
+
86
+ # Model Examination
87
+
88
+ More information needed
89
+
90
+ # Environmental Impact
91
+
92
+
93
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
94
+
95
+ - **Hardware Type:** More information needed
96
+ - **Hours used:** More information needed
97
+ - **Cloud Provider:** More information needed
98
+ - **Compute Region:** More information needed
99
+ - **Carbon Emitted:** More information needed
100
+
101
+ # Technical Specifications [optional]
102
+
103
+ ## Model Architecture and Objective
104
+
105
+ More information needed
106
+
107
+ ## Compute Infrastructure
108
+
109
+ More information needed
110
+
111
+ ### Hardware
112
+
113
+ More information needed
114
+
115
+ ### Software
116
+ Transformers version: 4.4.0.dev0
117
 
118
+ # Citation
119
+
120
+
121
+ **BibTeX:**
122
+
123
+ More information needed}
124
+
125
+ **APA:**
126
+
127
+ More information needed
128
+
129
+ # Glossary [optional]
130
+
131
+ More information needed
132
+
133
+ # More Information [optional]
134
+
135
+ More information needed
136
+
137
+ # Model Card Authors [optional]
138
+ Impira team in collaboration with Ezi Ozoani and the Hugging Face team.
139
+
140
+ # Model Card Contact
141
+
142
+ More information needed
143
+
144
+ # How to Get Started with the Model
145
+
146
+ Use the code below to get started with the model.
147
+
148
+ <details>
149
+ <summary> Click to expand </summary>
150
+ ```python
151
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
152
+
153
+ tokenizer = AutoTokenizer.from_pretrained("impira/layoutlm-document-classifier")
154
+
155
+ model = AutoModelForSequenceClassification.from_pretrained("impira/layoutlm-document-classifier")
156
+
157
+ ```
158
+ </details>
159
+
160
+
161
+