Edit model card

wav2vec2-large-xls-r-300m-odia

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - OR dataset. It achieves the following results on the evaluation set:

python eval.py --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config as --split test --log_outputs
  • WER: 1.0921052631578947
  • CER: 2.5547945205479454

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

Training machine details

  • Platform: Linux-5.11.0-37-generic-x86_64-with-glibc2.10
  • CPU cores: 60
  • Python version: 3.8.8
  • PyTorch version: 1.10.1+cu102
  • GPU is visible: True
  • Transformers version: 4.16.0.dev0
  • Datasets version: 1.17.1.dev0
  • soundfile version: 0.10.3

Training script

python run_speech_recognition_ctc.py \
    --dataset_name="mozilla-foundation/common_voice_7_0" \
    --model_name_or_path="facebook/wav2vec2-xls-r-300m" \
    --dataset_config_name="or" \
    --output_dir="./wav2vec2-large-xls-r-300m-odia" \
    --overwrite_output_dir \
    --num_train_epochs="120" \
    --per_device_train_batch_size="16" \
    --per_device_eval_batch_size="16" \
    --gradient_accumulation_steps="2" \
    --learning_rate="7.5e-5" \
    --warmup_steps="500" \
    --length_column_name="input_length" \
    --evaluation_strategy="steps" \
    --text_column_name="sentence" \
    --chars_to_ignore , ? . ! \- \; \: \" β€œ % β€˜ ” οΏ½ β€” \’ … \– \' \’ \– \
    --save_steps="500" \
    --eval_steps="500" \
    --logging_steps="100" \
    --layerdrop="0.0" \
    --activation_dropout="0.1" \
    --save_total_limit="3" \
    --freeze_feature_encoder \
    --feat_proj_dropout="0.0" \
    --mask_time_prob="0.75" \
    --mask_time_length="10" \
    --mask_feature_prob="0.25" \
    --mask_feature_length="64" \
    --gradient_checkpointing \
    --use_auth_token \
    --fp16 \
    --group_by_length \
    --do_train --do_eval \
  --push_to_hub

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 120.0
  • mixed_precision_training: Native AMP

Training results

eval_loss eval_wer eval_runtime eval_samples_per_second eval_steps_per_second epoch
0 3.35224 0.998972 5.0475 22.189 1.387 29.41
1 1.33679 0.938335 5.0633 22.12 1.382 58.82
2 0.737202 0.957862 5.0913 21.998 1.375 88.24
3 0.658212 0.96814 5.0953 21.981 1.374 117.65
4 0.658 0.9712 5.0953 22.115 1.382 120

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train infinitejoy/wav2vec2-large-xls-r-300m-odia

Space using infinitejoy/wav2vec2-large-xls-r-300m-odia 1

Evaluation results