Edit model card

cs605-nlp-assignment-2-bert-base-uncased

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9930
  • Accuracy: 0.7452

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5642 1.0 746 0.5072 0.7389
0.3952 2.0 1492 0.6096 0.7459
0.1079 3.0 2238 1.1929 0.7523
0.0792 4.0 2984 1.4899 0.7566
0.0268 5.0 3730 1.6392 0.7382
0.0203 6.0 4476 1.8555 0.7311
0.0104 7.0 5222 1.9696 0.7459
0.0049 8.0 5968 1.9695 0.7389
0.0036 9.0 6714 1.9248 0.7476
0.0019 10.0 7460 1.9930 0.7452

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
29
Safetensors
Model size
109M params
Tensor type
F32
·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for inflaton/cs605-nlp-assignment-2-bert-base-uncased

Finetuned
(2158)
this model