config.json CHANGED
@@ -20,10 +20,17 @@
20
  "num_hidden_layers": 60,
21
  "num_key_value_heads": 40,
22
  "pad_token_id": 2,
 
23
  "rms_norm_eps": 1e-06,
 
 
24
  "tie_word_embeddings": false,
25
- "torch_dtype": "float16",
26
- "transformers_version": "4.33.2",
27
  "use_cache": true,
28
- "vocab_size": 103168
 
 
 
 
29
  }
 
20
  "num_hidden_layers": 60,
21
  "num_key_value_heads": 40,
22
  "pad_token_id": 2,
23
+ "pretraining_tp": 1,
24
  "rms_norm_eps": 1e-06,
25
+ "rope_scaling": null,
26
+ "rope_theta": 10000.0,
27
  "tie_word_embeddings": false,
28
+ "torch_dtype": "bfloat16",
29
+ "transformers_version": "4.33.1",
30
  "use_cache": true,
31
+ "vocab_size": 103168,
32
+ "rotary": {
33
+ "base": 10000,
34
+ "type": "dynamic"
35
+ }
36
  }
configuration_internlm.py CHANGED
@@ -1,7 +1,10 @@
1
  # coding=utf-8
2
- # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
  #
4
- # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
 
 
 
5
  #
6
  # Licensed under the Apache License, Version 2.0 (the "License");
7
  # you may not use this file except in compliance with the License.
@@ -24,14 +27,16 @@ logger = logging.get_logger(__name__)
24
  INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
25
 
26
 
27
- # Modified from transformers.model.llama.configuration_llama.LlamaConfig
28
  class InternLMConfig(PretrainedConfig):
29
  r"""
30
  This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
31
  an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
32
  configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
 
33
  Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
  documentation from [`PretrainedConfig`] for more information.
 
 
35
  Args:
36
  vocab_size (`int`, *optional*, defaults to 32000):
37
  Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
@@ -59,12 +64,16 @@ class InternLMConfig(PretrainedConfig):
59
  tie_word_embeddings(`bool`, *optional*, defaults to `False`):
60
  Whether to tie weight embeddings
61
  Example:
 
62
  ```python
63
  >>> from transformers import InternLMModel, InternLMConfig
 
64
  >>> # Initializing a InternLM internlm-7b style configuration
65
  >>> configuration = InternLMConfig()
 
66
  >>> # Initializing a model from the internlm-7b style configuration
67
  >>> model = InternLMModel(configuration)
 
68
  >>> # Accessing the model configuration
69
  >>> configuration = model.config
70
  ```"""
@@ -89,7 +98,6 @@ class InternLMConfig(PretrainedConfig):
89
  tie_word_embeddings=False,
90
  bias=True,
91
  rotary={"base": 10000, "type": "dynamic"}, # pylint: disable=W0102
92
- attn_implementation="eager",
93
  **kwargs,
94
  ):
95
  self.vocab_size = vocab_size
@@ -104,9 +112,6 @@ class InternLMConfig(PretrainedConfig):
104
  self.use_cache = use_cache
105
  self.bias = bias
106
  self.rotary = rotary
107
- self.attn_implementation = attn_implementation
108
- if self.attn_implementation is None:
109
- self.attn_implementation = "eager"
110
  super().__init__(
111
  pad_token_id=pad_token_id,
112
  bos_token_id=bos_token_id,
 
1
  # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
  #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
  #
9
  # Licensed under the Apache License, Version 2.0 (the "License");
10
  # you may not use this file except in compliance with the License.
 
27
  INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
28
 
29
 
 
30
  class InternLMConfig(PretrainedConfig):
31
  r"""
32
  This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
33
  an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
34
  configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
35
+
36
  Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
  documentation from [`PretrainedConfig`] for more information.
38
+
39
+
40
  Args:
41
  vocab_size (`int`, *optional*, defaults to 32000):
42
  Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
 
64
  tie_word_embeddings(`bool`, *optional*, defaults to `False`):
65
  Whether to tie weight embeddings
66
  Example:
67
+
68
  ```python
69
  >>> from transformers import InternLMModel, InternLMConfig
70
+
71
  >>> # Initializing a InternLM internlm-7b style configuration
72
  >>> configuration = InternLMConfig()
73
+
74
  >>> # Initializing a model from the internlm-7b style configuration
75
  >>> model = InternLMModel(configuration)
76
+
77
  >>> # Accessing the model configuration
78
  >>> configuration = model.config
79
  ```"""
 
98
  tie_word_embeddings=False,
99
  bias=True,
100
  rotary={"base": 10000, "type": "dynamic"}, # pylint: disable=W0102
 
101
  **kwargs,
102
  ):
103
  self.vocab_size = vocab_size
 
112
  self.use_cache = use_cache
113
  self.bias = bias
114
  self.rotary = rotary
 
 
 
115
  super().__init__(
116
  pad_token_id=pad_token_id,
117
  bos_token_id=bos_token_id,
generation_config.json CHANGED
@@ -2,6 +2,5 @@
2
  "_from_model_config": true,
3
  "bos_token_id": 1,
4
  "eos_token_id": 2,
5
- "pad_token_id": 2,
6
- "transformers_version": "4.33.2"
7
  }
 
2
  "_from_model_config": true,
3
  "bos_token_id": 1,
4
  "eos_token_id": 2,
5
+ "transformers_version": "4.33.1"
 
6
  }
modeling_internlm.py CHANGED
@@ -1,6 +1,10 @@
1
- # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
 
2
  #
3
- # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
 
 
 
4
  #
5
  # Licensed under the Apache License, Version 2.0 (the "License");
6
  # you may not use this file except in compliance with the License.
@@ -24,6 +28,7 @@ import torch.utils.checkpoint
24
  from torch import nn
25
  from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
26
  from transformers.activations import ACT2FN
 
27
  from transformers.modeling_outputs import (
28
  BaseModelOutputWithPast,
29
  CausalLMOutputWithPast,
@@ -37,44 +42,14 @@ from transformers.utils import (
37
  replace_return_docstrings,
38
  )
39
 
40
- try:
41
- from transformers.generation.streamers import BaseStreamer
42
- except: # noqa # pylint: disable=bare-except
43
- BaseStreamer = None
44
-
45
  from .configuration_internlm import InternLMConfig
46
 
47
  logger = logging.get_logger(__name__)
48
 
49
  _CONFIG_FOR_DOC = "InternLMConfig"
50
 
51
- flash_attn_func, flash_attn_varlen_func = None, None
52
- pad_input, index_first_axis, unpad_input = None, None, None
53
- def _import_flash_attn():
54
- global flash_attn_func, flash_attn_varlen_func
55
- global pad_input, index_first_axis, unpad_input
56
- try:
57
- from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
58
- from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
59
- flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
60
- pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
61
- except ImportError:
62
- raise ImportError("flash_attn is not installed.")
63
-
64
-
65
- def _get_unpad_data(attention_mask):
66
- seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
67
- indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
68
- max_seqlen_in_batch = seqlens_in_batch.max().item()
69
- cu_seqlens = nn.functional.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
70
- return (
71
- indices,
72
- cu_seqlens,
73
- max_seqlen_in_batch,
74
- )
75
-
76
-
77
- # Copied from transformers.models.llama.modeling_llama._make_causal_mask
78
  def _make_causal_mask(
79
  input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
80
  ):
@@ -92,7 +67,7 @@ def _make_causal_mask(
92
  return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
93
 
94
 
95
- # Copied from transformers.models.llama.modeling_llama._expand_mask
96
  def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
97
  """
98
  Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
@@ -107,7 +82,6 @@ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int]
107
  return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
108
 
109
 
110
- # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM
111
  class InternLMRMSNorm(nn.Module):
112
  """RMSNorm implemention."""
113
 
@@ -130,7 +104,6 @@ class InternLMRMSNorm(nn.Module):
130
  return self.weight * hidden_states
131
 
132
 
133
- # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM
134
  class InternLMRotaryEmbedding(torch.nn.Module):
135
  """Implement InternLM's rotary embedding.
136
 
@@ -140,7 +113,6 @@ class InternLMRotaryEmbedding(torch.nn.Module):
140
  base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
141
  device (Any, optional): Running device. Defaults to None.
142
  """
143
-
144
  def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
145
  super().__init__()
146
  inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
@@ -152,8 +124,8 @@ class InternLMRotaryEmbedding(torch.nn.Module):
152
  freqs = torch.einsum("i,j->ij", t, self.inv_freq)
153
  # Different from paper, but it uses a different permutation in order to obtain the same calculation
154
  emb = torch.cat((freqs, freqs), dim=-1)
155
- self.register_buffer("cos_cached", emb.cos().to(torch.float32), persistent=False)
156
- self.register_buffer("sin_cached", emb.sin().to(torch.float32), persistent=False)
157
 
158
  def forward(self, x, seq_len=None):
159
  # x: [bs, num_attention_heads, seq_len, head_size]
@@ -164,15 +136,14 @@ class InternLMRotaryEmbedding(torch.nn.Module):
164
  freqs = torch.einsum("i,j->ij", t, self.inv_freq)
165
  # Different from paper, but it uses a different permutation in order to obtain the same calculation
166
  emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
167
- self.register_buffer("cos_cached", emb.cos(), persistent=False)
168
- self.register_buffer("sin_cached", emb.sin(), persistent=False)
169
  return (
170
- self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
171
- self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
172
  )
173
 
174
 
175
- # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM
176
  class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
177
  """Implement InternLM's DyanmicNTK extrapolation method, thereby broadening the model support context to 16K.
178
 
@@ -187,7 +158,7 @@ class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
187
  def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
188
  super().__init__()
189
  inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
190
- self.register_buffer("inv_freq", inv_freq, persistent=False)
191
  self.dim = dim
192
  self.base = base
193
  self.scaling_factor = scaling_factor
@@ -199,8 +170,8 @@ class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
199
  freqs = torch.einsum("i,j->ij", t, self.inv_freq)
200
  # Different from paper, but it uses a different permutation in order to obtain the same calculation
201
  emb = torch.cat((freqs, freqs), dim=-1)
202
- self.register_buffer("cos_cached", emb.cos(), persistent=False)
203
- self.register_buffer("sin_cached", emb.sin(), persistent=False)
204
 
205
  def _update_cached(self, x, seq_len=None):
206
  self.max_seq_len_cached = max(seq_len, self.max_position_embeddings)
@@ -214,8 +185,8 @@ class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
214
  t = torch.arange(self.max_seq_len_cached, device=inv_freq.device, dtype=inv_freq.dtype)
215
  freqs = torch.einsum("i,j->ij", t, inv_freq)
216
  emb = torch.cat((freqs, freqs), dim=-1)
217
- self.register_buffer("cos_cached", emb.cos(), persistent=False)
218
- self.register_buffer("sin_cached", emb.sin(), persistent=False)
219
 
220
  def forward(self, x, seq_len=None):
221
  # x: [bs, num_attention_heads, seq_len, head_size]
@@ -228,12 +199,11 @@ class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
228
  self._update_cached(x, seq_len)
229
 
230
  return (
231
- self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
232
- self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
233
  )
234
 
235
 
236
- # Copied from transformers.model.llama.modeling_llama.rotate_half
237
  def rotate_half(x):
238
  """Rotates half the hidden dims of the input."""
239
  x1 = x[..., : x.shape[-1] // 2]
@@ -241,28 +211,25 @@ def rotate_half(x):
241
  return torch.cat((-x2, x1), dim=-1)
242
 
243
 
244
- # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
245
  def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
246
- if position_ids.size(1) == 1:
247
- q_cos = cos[position_ids].unsqueeze(1).expand(q.shape)
248
- q_sin = sin[position_ids].unsqueeze(1).expand(q.shape)
249
- q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
250
-
251
- position_ids = position_ids.flatten() + 1
252
- max_length = max(position_ids)
253
- position_ids = torch.stack([torch.cat([torch.ones(max_length - w, dtype=torch.long), torch.arange(w)]) for w in position_ids])
254
- k_cos = cos[position_ids].unsqueeze(1).expand(k.shape)
255
- k_sin = sin[position_ids].unsqueeze(1).expand(k.shape)
256
- k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
257
  else:
258
- cos = cos[position_ids].unsqueeze(1)
259
- sin = sin[position_ids].unsqueeze(1)
260
  q_embed = (q * cos) + (rotate_half(q) * sin)
 
 
 
 
261
  k_embed = (k * cos) + (rotate_half(k) * sin)
 
262
  return q_embed, k_embed
263
 
264
 
265
- # Copied from transformers.models.llama.modeling_llama.LlamaMLP with Llama->InternLM
266
  class InternLMMLP(nn.Module):
267
  def __init__(
268
  self,
@@ -280,7 +247,6 @@ class InternLMMLP(nn.Module):
280
  return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
281
 
282
 
283
- # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->InternLM
284
  class InternLMAttention(nn.Module):
285
  """Multi-headed attention from 'Attention Is All You Need' paper"""
286
 
@@ -302,7 +268,6 @@ class InternLMAttention(nn.Module):
302
  self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
303
  self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
304
  self.rotary_emb = self._init_rope()
305
- self.is_causal = True
306
 
307
  def _init_rope(self):
308
  if self.config.rotary["type"] == "origin":
@@ -345,6 +310,7 @@ class InternLMAttention(nn.Module):
345
  key_states = torch.cat([past_key_value[0], key_states], dim=2)
346
  value_states = torch.cat([past_key_value[1], value_states], dim=2)
347
 
 
348
  past_key_value = (key_states, value_states) if use_cache else None
349
 
350
  kv_seq_len = key_states.shape[-2]
@@ -387,163 +353,12 @@ class InternLMAttention(nn.Module):
387
 
388
  return attn_output, attn_weights, past_key_value
389
 
390
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->InternLM
391
- class InternLMFlashAttention2(InternLMAttention):
392
- """
393
- InternLM flash attention module. This module inherits from `InternLMAttention` as the weights of the module stays
394
- untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
395
- flash attention and deal with padding tokens in case the input contains any of them.
396
- """
397
-
398
- def forward(
399
- self,
400
- hidden_states: torch.Tensor,
401
- attention_mask: Optional[torch.LongTensor] = None,
402
- position_ids: Optional[torch.LongTensor] = None,
403
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
404
- output_attentions: bool = False,
405
- use_cache: bool = False,
406
- **kwargs,
407
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
408
- # InternLMFlashAttention2 attention does not support output_attentions
409
- bsz, q_len, _ = hidden_states.size()
410
-
411
- query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
412
- key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
413
- value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
414
-
415
- if past_key_value is not None:
416
- # reuse k, v, self_attention
417
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
418
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
419
-
420
- past_key_value = (key_states, value_states) if use_cache else None
421
-
422
- kv_seq_len = key_states.shape[-2]
423
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
424
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
425
-
426
- query_states = query_states.transpose(1, 2)
427
- key_states = key_states.transpose(1, 2)
428
- value_states = value_states.transpose(1, 2)
429
-
430
- attn_output = self._flash_attention_forward(
431
- query_states, key_states, value_states, attention_mask, q_len
432
- )
433
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
434
- attn_output = self.o_proj(attn_output)
435
-
436
- if not output_attentions:
437
- attn_weights = None
438
-
439
- return attn_output, attn_weights, past_key_value
440
-
441
- def _flash_attention_forward(
442
- self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
443
- ):
444
- """
445
- Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
446
- first unpad the input, then computes the attention scores and pad the final attention scores.
447
-
448
- Args:
449
- query_states (`torch.Tensor`):
450
- Input query states to be passed to Flash Attention API
451
- key_states (`torch.Tensor`):
452
- Input key states to be passed to Flash Attention API
453
- value_states (`torch.Tensor`):
454
- Input value states to be passed to Flash Attention API
455
- attention_mask (`torch.Tensor`):
456
- The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
457
- position of padding tokens and 1 for the position of non-padding tokens.
458
- dropout (`int`, *optional*):
459
- Attention dropout
460
- softmax_scale (`float`, *optional*):
461
- The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
462
- """
463
- # Contains at least one padding token in the sequence
464
- causal = self.is_causal and query_length != 1
465
- if attention_mask is not None:
466
- batch_size = query_states.shape[0]
467
- query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
468
- query_states, key_states, value_states, attention_mask, query_length
469
- )
470
-
471
- cu_seqlens_q, cu_seqlens_k = cu_seq_lens
472
- max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
473
-
474
- attn_output_unpad = flash_attn_varlen_func(
475
- query_states,
476
- key_states,
477
- value_states,
478
- cu_seqlens_q=cu_seqlens_q,
479
- cu_seqlens_k=cu_seqlens_k,
480
- max_seqlen_q=max_seqlen_in_batch_q,
481
- max_seqlen_k=max_seqlen_in_batch_k,
482
- dropout_p=dropout,
483
- softmax_scale=softmax_scale,
484
- causal=causal,
485
- )
486
-
487
- attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
488
- else:
489
- attn_output = flash_attn_func(
490
- query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
491
- )
492
-
493
- return attn_output
494
-
495
- def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
496
- indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
497
- batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
498
-
499
- key_layer = index_first_axis(
500
- key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
501
- )
502
- value_layer = index_first_axis(
503
- value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
504
- )
505
-
506
- if query_length == kv_seq_len:
507
- query_layer = index_first_axis(
508
- query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
509
- )
510
- cu_seqlens_q = cu_seqlens_k
511
- max_seqlen_in_batch_q = max_seqlen_in_batch_k
512
- indices_q = indices_k
513
- elif query_length == 1:
514
- max_seqlen_in_batch_q = 1
515
- cu_seqlens_q = torch.arange(
516
- batch_size + 1, dtype=torch.int32, device=query_layer.device
517
- ) # There is a memcpy here, that is very bad.
518
- indices_q = cu_seqlens_q[:-1]
519
- query_layer = query_layer.squeeze(1)
520
- else:
521
- # The -q_len: slice assumes left padding.
522
- attention_mask = attention_mask[:, -query_length:]
523
- query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
524
-
525
- return (
526
- query_layer,
527
- key_layer,
528
- value_layer,
529
- indices_q.to(torch.int64),
530
- (cu_seqlens_q, cu_seqlens_k),
531
- (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
532
- )
533
-
534
- INTERNLM_ATTENTION_CLASSES = {
535
- "eager": InternLMAttention,
536
- "flash_attention_2": InternLMFlashAttention2,
537
- }
538
 
539
- # Copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->InternLM
540
  class InternLMDecoderLayer(nn.Module):
541
  def __init__(self, config: InternLMConfig):
542
  super().__init__()
543
  self.hidden_size = config.hidden_size
544
-
545
- self.self_attn = INTERNLM_ATTENTION_CLASSES[config.attn_implementation](config=config)
546
-
547
  self.mlp = InternLMMLP(
548
  hidden_size=self.hidden_size,
549
  intermediate_size=config.intermediate_size,
@@ -622,7 +437,6 @@ INTERNLM_START_DOCSTRING = r"""
622
  """
623
 
624
 
625
- # Copied from transformers.models.llama.modeling_llama.LlamaPretrainedModel with Llama->InternLM
626
  @add_start_docstrings(
627
  "The bare InternLM Model outputting raw hidden-states without any specific head on top.",
628
  INTERNLM_START_DOCSTRING,
@@ -704,7 +518,6 @@ INTERNLM_INPUTS_DOCSTRING = r"""
704
  """
705
 
706
 
707
- # Copied from transformers.models.llama.modeling_llama.LlamaModel with Llama->InternLM
708
  @add_start_docstrings(
709
  "The bare InternLM Model outputting raw hidden-states without any specific head on top.",
710
  INTERNLM_START_DOCSTRING,
@@ -722,10 +535,8 @@ class InternLMModel(InternLMPreTrainedModel):
722
  super().__init__(config)
723
  self.padding_idx = config.pad_token_id
724
  self.vocab_size = config.vocab_size
725
- self.config = config
726
 
727
  self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
728
-
729
  self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)])
730
  self.norm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
731
 
@@ -784,9 +595,6 @@ class InternLMModel(InternLMPreTrainedModel):
784
 
785
  return_dict = return_dict if return_dict is not None else self.config.use_return_dict
786
 
787
- if self.config.attn_implementation == "flash_attention_2":
788
- _import_flash_attn()
789
-
790
  # retrieve input_ids and inputs_embeds
791
  if input_ids is not None and inputs_embeds is not None:
792
  raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
@@ -815,16 +623,14 @@ class InternLMModel(InternLMPreTrainedModel):
815
 
816
  if inputs_embeds is None:
817
  inputs_embeds = self.embed_tokens(input_ids)
818
- if self.config.attn_implementation == "flash_attention_2":
819
- attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
820
- else:
821
- if attention_mask is None:
822
- attention_mask = torch.ones(
823
- (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
824
- )
825
- attention_mask = self._prepare_decoder_attention_mask(
826
- attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
827
  )
 
 
 
828
 
829
  hidden_states = inputs_embeds
830
 
@@ -897,7 +703,6 @@ class InternLMModel(InternLMPreTrainedModel):
897
  )
898
 
899
 
900
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with Llama->InternLM
901
  class InternLMForCausalLM(InternLMPreTrainedModel):
902
  _auto_class = "AutoModelForCausalLM"
903
 
@@ -950,7 +755,6 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
950
  config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
951
  (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
952
  Returns:
953
-
954
  Example:
955
  ```python
956
  >>> from transformers import AutoTokenizer, InternLMForCausalLM
@@ -962,9 +766,7 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
962
  >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
963
  >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
964
  "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
965
- ```
966
-
967
- """
968
 
969
  output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
970
  output_hidden_states = (
@@ -1049,17 +851,12 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
1049
  for layer_past in past_key_values:
1050
  reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
1051
  return reordered_past
1052
-
1053
- def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=""):
1054
- if tokenizer.add_bos_token:
1055
- prompt = ""
1056
- else:
1057
- prompt = tokenizer.bos_token
1058
- if meta_instruction:
1059
- prompt += f"""<|System|>:{meta_instruction}\n"""
1060
  for record in history:
1061
- prompt += f"""<|User|>:{record[0]}\n<|Bot|>:{record[1]}<eoa>\n"""
1062
- prompt += f"""<|User|>:{query}\n<|Bot|>:"""
1063
  return tokenizer([prompt], return_tensors="pt")
1064
 
1065
  @torch.no_grad()
@@ -1073,12 +870,9 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
1073
  do_sample: bool = True,
1074
  temperature: float = 0.8,
1075
  top_p: float = 0.8,
1076
- meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n"
1077
- "- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
1078
- "- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.",
1079
  **kwargs,
1080
  ):
1081
- inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1082
  inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1083
  outputs = self.generate(
1084
  **inputs,
@@ -1113,11 +907,6 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
1113
  ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1114
  ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1115
  """
1116
- if BaseStreamer is None:
1117
- raise ModuleNotFoundError(
1118
- "The version of `transformers` is too low. Please make sure "
1119
- "that you have installed `transformers>=4.28.0`."
1120
- )
1121
 
1122
  response_queue = queue.Queue(maxsize=20)
1123
 
@@ -1129,7 +918,6 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
1129
  self.query = query
1130
  self.history = history
1131
  self.response = ""
1132
- self.cache = []
1133
  self.received_inputs = False
1134
  self.queue.put((self.response, history + [(self.query, self.response)]))
1135
 
@@ -1144,17 +932,11 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
1144
  self.received_inputs = True
1145
  return
1146
 
1147
- self.cache.extend(value.tolist())
1148
- token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1149
- if "�" in token and len(token) <= 5:
1150
- return
1151
  if token.strip() != "<eoa>":
1152
  self.response = self.response + token
1153
  history = self.history + [(self.query, self.response)]
1154
  self.queue.put((self.response, history))
1155
- self.cache = []
1156
- else:
1157
- self.end()
1158
 
1159
  def end(self):
1160
  self.queue.put(None)
@@ -1301,4 +1083,4 @@ class InternLMForSequenceClassification(InternLMPreTrainedModel):
1301
  past_key_values=transformer_outputs.past_key_values,
1302
  hidden_states=transformer_outputs.hidden_states,
1303
  attentions=transformer_outputs.attentions,
1304
- )
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
  #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
  #
9
  # Licensed under the Apache License, Version 2.0 (the "License");
10
  # you may not use this file except in compliance with the License.
 
28
  from torch import nn
29
  from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
  from transformers.activations import ACT2FN
31
+ from transformers.generation.streamers import BaseStreamer
32
  from transformers.modeling_outputs import (
33
  BaseModelOutputWithPast,
34
  CausalLMOutputWithPast,
 
42
  replace_return_docstrings,
43
  )
44
 
 
 
 
 
 
45
  from .configuration_internlm import InternLMConfig
46
 
47
  logger = logging.get_logger(__name__)
48
 
49
  _CONFIG_FOR_DOC = "InternLMConfig"
50
 
51
+
52
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  def _make_causal_mask(
54
  input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
55
  ):
 
67
  return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
68
 
69
 
70
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
71
  def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
72
  """
73
  Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
 
82
  return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
83
 
84
 
 
85
  class InternLMRMSNorm(nn.Module):
86
  """RMSNorm implemention."""
87
 
 
104
  return self.weight * hidden_states
105
 
106
 
 
107
  class InternLMRotaryEmbedding(torch.nn.Module):
108
  """Implement InternLM's rotary embedding.
109
 
 
113
  base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
114
  device (Any, optional): Running device. Defaults to None.
115
  """
 
116
  def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
117
  super().__init__()
118
  inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
 
124
  freqs = torch.einsum("i,j->ij", t, self.inv_freq)
125
  # Different from paper, but it uses a different permutation in order to obtain the same calculation
126
  emb = torch.cat((freqs, freqs), dim=-1)
127
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
128
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
129
 
130
  def forward(self, x, seq_len=None):
131
  # x: [bs, num_attention_heads, seq_len, head_size]
 
136
  freqs = torch.einsum("i,j->ij", t, self.inv_freq)
137
  # Different from paper, but it uses a different permutation in order to obtain the same calculation
138
  emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
139
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
140
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
141
  return (
142
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
143
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
144
  )
145
 
146
 
 
147
  class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
148
  """Implement InternLM's DyanmicNTK extrapolation method, thereby broadening the model support context to 16K.
149
 
 
158
  def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
159
  super().__init__()
160
  inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
161
+ self.register_buffer("inv_freq", inv_freq)
162
  self.dim = dim
163
  self.base = base
164
  self.scaling_factor = scaling_factor
 
170
  freqs = torch.einsum("i,j->ij", t, self.inv_freq)
171
  # Different from paper, but it uses a different permutation in order to obtain the same calculation
172
  emb = torch.cat((freqs, freqs), dim=-1)
173
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
174
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
175
 
176
  def _update_cached(self, x, seq_len=None):
177
  self.max_seq_len_cached = max(seq_len, self.max_position_embeddings)
 
185
  t = torch.arange(self.max_seq_len_cached, device=inv_freq.device, dtype=inv_freq.dtype)
186
  freqs = torch.einsum("i,j->ij", t, inv_freq)
187
  emb = torch.cat((freqs, freqs), dim=-1)
188
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
189
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
190
 
191
  def forward(self, x, seq_len=None):
192
  # x: [bs, num_attention_heads, seq_len, head_size]
 
199
  self._update_cached(x, seq_len)
200
 
201
  return (
202
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
203
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
204
  )
205
 
206
 
 
207
  def rotate_half(x):
208
  """Rotates half the hidden dims of the input."""
209
  x1 = x[..., : x.shape[-1] // 2]
 
211
  return torch.cat((-x2, x1), dim=-1)
212
 
213
 
 
214
  def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
215
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
216
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
217
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
218
+ cos = cos.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
219
+ sin = sin.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
220
+ if q.size(2) == 1:
221
+ q_embed = (q * cos[:, :, -1, :]) + (rotate_half(q) * sin[:, :, -1, :])
 
 
 
 
222
  else:
 
 
223
  q_embed = (q * cos) + (rotate_half(q) * sin)
224
+
225
+ if k.size(2) == 1:
226
+ k_embed = (k * cos[:, :, -1, :]) + (rotate_half(k) * sin[:, :, -1, :])
227
+ else:
228
  k_embed = (k * cos) + (rotate_half(k) * sin)
229
+
230
  return q_embed, k_embed
231
 
232
 
 
233
  class InternLMMLP(nn.Module):
234
  def __init__(
235
  self,
 
247
  return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
248
 
249
 
 
250
  class InternLMAttention(nn.Module):
251
  """Multi-headed attention from 'Attention Is All You Need' paper"""
252
 
 
268
  self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
269
  self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
270
  self.rotary_emb = self._init_rope()
 
271
 
272
  def _init_rope(self):
273
  if self.config.rotary["type"] == "origin":
 
310
  key_states = torch.cat([past_key_value[0], key_states], dim=2)
311
  value_states = torch.cat([past_key_value[1], value_states], dim=2)
312
 
313
+ # print(use_cache)
314
  past_key_value = (key_states, value_states) if use_cache else None
315
 
316
  kv_seq_len = key_states.shape[-2]
 
353
 
354
  return attn_output, attn_weights, past_key_value
355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356
 
 
357
  class InternLMDecoderLayer(nn.Module):
358
  def __init__(self, config: InternLMConfig):
359
  super().__init__()
360
  self.hidden_size = config.hidden_size
361
+ self.self_attn = InternLMAttention(config=config)
 
 
362
  self.mlp = InternLMMLP(
363
  hidden_size=self.hidden_size,
364
  intermediate_size=config.intermediate_size,
 
437
  """
438
 
439
 
 
440
  @add_start_docstrings(
441
  "The bare InternLM Model outputting raw hidden-states without any specific head on top.",
442
  INTERNLM_START_DOCSTRING,
 
518
  """
519
 
520
 
 
521
  @add_start_docstrings(
522
  "The bare InternLM Model outputting raw hidden-states without any specific head on top.",
523
  INTERNLM_START_DOCSTRING,
 
535
  super().__init__(config)
536
  self.padding_idx = config.pad_token_id
537
  self.vocab_size = config.vocab_size
 
538
 
539
  self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
 
540
  self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)])
541
  self.norm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
542
 
 
595
 
596
  return_dict = return_dict if return_dict is not None else self.config.use_return_dict
597
 
 
 
 
598
  # retrieve input_ids and inputs_embeds
599
  if input_ids is not None and inputs_embeds is not None:
600
  raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
 
623
 
624
  if inputs_embeds is None:
625
  inputs_embeds = self.embed_tokens(input_ids)
626
+ # embed positions
627
+ if attention_mask is None:
628
+ attention_mask = torch.ones(
629
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
 
 
 
 
 
630
  )
631
+ attention_mask = self._prepare_decoder_attention_mask(
632
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
633
+ )
634
 
635
  hidden_states = inputs_embeds
636
 
 
703
  )
704
 
705
 
 
706
  class InternLMForCausalLM(InternLMPreTrainedModel):
707
  _auto_class = "AutoModelForCausalLM"
708
 
 
755
  config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
756
  (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
757
  Returns:
 
758
  Example:
759
  ```python
760
  >>> from transformers import AutoTokenizer, InternLMForCausalLM
 
766
  >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
767
  >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
768
  "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
769
+ ```"""
 
 
770
 
771
  output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
772
  output_hidden_states = (
 
851
  for layer_past in past_key_values:
852
  reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
853
  return reordered_past
854
+
855
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = []):
856
+ prompt = ""
 
 
 
 
 
857
  for record in history:
858
+ prompt += f"""<|User|>:{record[0]}<eoh>\n<|Bot|>:{record[1]}<eoa>\n"""
859
+ prompt += f"""<|User|>:{query}<eoh>\n<|Bot|>:"""
860
  return tokenizer([prompt], return_tensors="pt")
861
 
862
  @torch.no_grad()
 
870
  do_sample: bool = True,
871
  temperature: float = 0.8,
872
  top_p: float = 0.8,
 
 
 
873
  **kwargs,
874
  ):
875
+ inputs = self.build_inputs(tokenizer, query, history)
876
  inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
877
  outputs = self.generate(
878
  **inputs,
 
907
  ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
908
  ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
909
  """
 
 
 
 
 
910
 
911
  response_queue = queue.Queue(maxsize=20)
912
 
 
918
  self.query = query
919
  self.history = history
920
  self.response = ""
 
921
  self.received_inputs = False
922
  self.queue.put((self.response, history + [(self.query, self.response)]))
923
 
 
932
  self.received_inputs = True
933
  return
934
 
935
+ token = self.tokenizer.decode([value[-1]], skip_special_tokens=True)
 
 
 
936
  if token.strip() != "<eoa>":
937
  self.response = self.response + token
938
  history = self.history + [(self.query, self.response)]
939
  self.queue.put((self.response, history))
 
 
 
940
 
941
  def end(self):
942
  self.queue.put(None)
 
1083
  past_key_values=transformer_outputs.past_key_values,
1084
  hidden_states=transformer_outputs.hidden_states,
1085
  attentions=transformer_outputs.attentions,
1086
+ )
pytorch_model-00001-of-00006.bin → pytorch_model-00001-of-00005.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9c989b1624a481672a7018455d7ff95398ded2a07698ccf2687877db91baf254
3
- size 7893395149
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeba743507872c45e7cf951d7996bce448d8deada841d055d2ac03948af0c2b7
3
+ size 9990647029
pytorch_model-00002-of-00006.bin → pytorch_model-00002-of-00005.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:11c9b3fc955587d5ea525c787d7677602e0f3d70131259b3c12079e034e68132
3
- size 7964241876
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a11c8737fce8d6be9a8f6eb0faa44016c94813aed1d50a757ca32abece4ed461
3
+ size 9956594199
pytorch_model-00003-of-00006.bin → pytorch_model-00003-of-00005.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:366595a002cc2ce217aec0c4885e7c5f840df751155f9e2510e6472e171c02d2
3
- size 7896062197
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c64167ce104e9a576da50f89a398ac2124734621c45e12ea0addbac99ad87ac
3
+ size 9867486361
pytorch_model-00004-of-00006.bin → pytorch_model-00004-of-00005.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:508cfed19500ecf7678f1680a47a1073b73f8ad5597612c094c8b2e7df8d3931
3
- size 7964241876
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40e22421695e3206bc85f0a4839641370bc8277ab689ff0e5d75e708d51f8691
3
+ size 9306483281
pytorch_model-00006-of-00006.bin → pytorch_model-00005-of-00005.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:89b0631c7069213a49dd8a3cb9012e52d82ac9328bd96e2bba8383d825720039
3
  size 1056441258
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:263f29c6331d8951fd454d4bbd2991d422bbcfb5b07d4acbb0e75aaf53b1a76c
3
  size 1056441258
pytorch_model-00005-of-00006.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4182de7c0df21447a5b7ed8cbb68162e85be061f23ddab73b8be157049fb9e31
3
- size 7403239886
 
 
 
 
pytorch_model.bin.index.json CHANGED
@@ -3,548 +3,548 @@
3
  "total_size": 40177428480
4
  },
5
  "weight_map": {
6
- "lm_head.weight": "pytorch_model-00006-of-00006.bin",
7
- "model.embed_tokens.weight": "pytorch_model-00001-of-00006.bin",
8
- "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
9
- "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
10
- "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
11
- "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
12
- "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
13
- "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
14
- "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
15
- "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
16
- "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
17
- "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
18
- "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
19
- "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
20
- "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
21
- "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
22
- "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
23
- "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
24
- "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
25
- "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
26
- "model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
27
- "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
28
- "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
29
- "model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
30
- "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
31
- "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
32
- "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
33
- "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
34
- "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
35
- "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
36
- "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
37
- "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
38
- "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
39
- "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
40
- "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
41
- "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
42
- "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
43
- "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
44
- "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
45
- "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
46
- "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
47
- "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
48
- "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
49
- "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
50
- "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
51
- "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
52
- "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
53
- "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
54
- "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
55
- "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
56
- "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
57
- "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
58
- "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
59
- "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
60
- "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
61
- "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
62
- "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
63
- "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
64
- "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
65
- "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
66
- "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
67
- "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
68
- "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
69
- "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
70
- "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
71
- "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
72
- "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
73
- "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
74
- "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
75
- "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
76
- "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
77
- "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
78
- "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
79
- "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
80
- "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
81
- "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
82
- "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
83
- "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
84
- "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
85
- "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
86
- "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
87
- "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
88
- "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
89
- "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
90
- "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
91
- "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
92
- "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
93
- "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
94
- "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
95
- "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
96
- "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
97
- "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
98
- "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
99
- "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
100
- "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
101
- "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
102
- "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
103
- "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
104
- "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
105
- "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
106
- "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
107
- "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
108
- "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
109
- "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
110
- "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
111
- "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
112
- "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
113
- "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
114
- "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
115
- "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
116
- "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
117
- "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
118
- "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
119
- "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
120
- "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
121
- "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
122
- "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
123
- "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
124
- "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
125
- "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
126
- "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
127
- "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
128
- "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
129
- "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
130
- "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
131
- "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
132
- "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
133
- "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
134
- "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
135
- "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
136
- "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
137
- "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
138
- "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
139
- "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
140
- "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
141
- "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
142
- "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
143
- "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
144
- "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
145
- "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
146
- "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
147
- "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
148
- "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
149
- "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
150
- "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
151
- "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
152
- "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
153
- "model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
154
- "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
155
- "model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
156
- "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
157
- "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
158
- "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
159
- "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
160
- "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
161
- "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
162
- "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
163
- "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
164
- "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
165
- "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
166
- "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
167
- "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
168
- "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
169
- "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
170
- "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
171
- "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
172
- "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
173
- "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
174
- "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
175
- "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
176
- "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
177
- "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
178
- "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
179
- "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
180
- "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
181
- "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
182
- "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
183
- "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
184
- "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
185
- "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
186
- "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
187
- "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
188
- "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
189
- "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
190
- "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
191
- "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
192
- "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
193
- "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
194
- "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
195
- "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
196
- "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
197
- "model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
198
- "model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
199
- "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
200
- "model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
201
- "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
202
- "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
203
- "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
204
- "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
205
- "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
206
- "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
207
- "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
208
- "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
209
- "model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
210
- "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
211
- "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
212
- "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
213
- "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
214
- "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
215
- "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
216
- "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
217
- "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
218
- "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
219
- "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
220
- "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
221
- "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
222
- "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
223
- "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
224
- "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
225
- "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
226
- "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
227
- "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
228
- "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
229
- "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
230
- "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
231
- "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
232
- "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
233
- "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
234
- "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
235
- "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
236
- "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
237
- "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
238
- "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
239
- "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
240
- "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
241
- "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
242
- "model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
243
- "model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
244
- "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
245
- "model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
246
- "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
247
- "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
248
- "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
249
- "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
250
- "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
251
- "model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
252
- "model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
253
- "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
254
- "model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
255
- "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
256
- "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
257
- "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
258
- "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
259
- "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
260
- "model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
261
- "model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
262
- "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
263
- "model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
264
- "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
265
- "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
266
- "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
267
- "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
268
- "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
269
- "model.layers.35.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
270
- "model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
271
- "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
272
- "model.layers.35.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
273
- "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
274
- "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
275
- "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
276
- "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
277
- "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
278
- "model.layers.36.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
279
- "model.layers.36.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
280
- "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
281
- "model.layers.36.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
282
- "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
283
- "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
284
- "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
285
- "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
286
- "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
287
- "model.layers.37.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
288
- "model.layers.37.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
289
- "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
290
- "model.layers.37.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
291
- "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
292
- "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
293
- "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
294
- "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
295
- "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
296
- "model.layers.38.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
297
- "model.layers.38.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
298
- "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
299
- "model.layers.38.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
300
- "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
301
- "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
302
- "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
303
- "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
304
- "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
305
- "model.layers.39.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
306
- "model.layers.39.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
307
- "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
308
- "model.layers.39.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
309
- "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
310
- "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
311
- "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
312
- "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
313
- "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
314
- "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
315
- "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
316
- "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
317
- "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
318
- "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
319
- "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
320
- "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
321
- "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
322
- "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
323
- "model.layers.40.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
324
- "model.layers.40.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
325
- "model.layers.40.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
326
- "model.layers.40.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
327
- "model.layers.40.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
328
- "model.layers.40.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
329
- "model.layers.40.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
330
- "model.layers.40.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
331
- "model.layers.40.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
332
- "model.layers.41.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
333
- "model.layers.41.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
334
- "model.layers.41.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
335
- "model.layers.41.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
336
- "model.layers.41.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
337
- "model.layers.41.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
338
- "model.layers.41.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
339
- "model.layers.41.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
340
- "model.layers.41.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
341
- "model.layers.42.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
342
- "model.layers.42.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
343
- "model.layers.42.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
344
- "model.layers.42.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
345
- "model.layers.42.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
346
- "model.layers.42.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
347
- "model.layers.42.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
348
- "model.layers.42.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
349
- "model.layers.42.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
350
- "model.layers.43.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
351
- "model.layers.43.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
352
- "model.layers.43.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
353
- "model.layers.43.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
354
- "model.layers.43.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
355
- "model.layers.43.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
356
- "model.layers.43.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
357
- "model.layers.43.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
358
- "model.layers.43.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
359
- "model.layers.44.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
360
- "model.layers.44.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
361
- "model.layers.44.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
362
- "model.layers.44.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
363
- "model.layers.44.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
364
- "model.layers.44.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
365
- "model.layers.44.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
366
- "model.layers.44.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
367
- "model.layers.44.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
368
- "model.layers.45.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
369
- "model.layers.45.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
370
- "model.layers.45.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
371
- "model.layers.45.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
372
- "model.layers.45.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
373
- "model.layers.45.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
374
- "model.layers.45.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
375
- "model.layers.45.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
376
- "model.layers.45.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
377
- "model.layers.46.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
378
- "model.layers.46.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
379
- "model.layers.46.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
380
- "model.layers.46.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
381
- "model.layers.46.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
382
- "model.layers.46.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
383
- "model.layers.46.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
384
- "model.layers.46.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
385
- "model.layers.46.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
386
- "model.layers.47.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
387
- "model.layers.47.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
388
- "model.layers.47.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
389
- "model.layers.47.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
390
- "model.layers.47.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
391
- "model.layers.47.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
392
- "model.layers.47.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
393
- "model.layers.47.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
394
- "model.layers.47.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
395
- "model.layers.48.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
396
- "model.layers.48.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
397
- "model.layers.48.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
398
- "model.layers.48.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
399
- "model.layers.48.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
400
- "model.layers.48.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
401
- "model.layers.48.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
402
- "model.layers.48.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
403
- "model.layers.48.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
404
- "model.layers.49.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
405
- "model.layers.49.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
406
- "model.layers.49.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
407
- "model.layers.49.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
408
- "model.layers.49.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
409
- "model.layers.49.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
410
- "model.layers.49.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
411
- "model.layers.49.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
412
- "model.layers.49.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
413
- "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
414
- "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
415
- "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
416
- "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
417
- "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
418
- "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
419
- "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
420
- "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
421
- "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
422
- "model.layers.50.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
423
- "model.layers.50.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
424
- "model.layers.50.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
425
- "model.layers.50.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
426
- "model.layers.50.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
427
- "model.layers.50.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
428
- "model.layers.50.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
429
- "model.layers.50.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
430
- "model.layers.50.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
431
- "model.layers.51.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
432
- "model.layers.51.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
433
- "model.layers.51.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
434
- "model.layers.51.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
435
- "model.layers.51.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
436
- "model.layers.51.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
437
- "model.layers.51.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
438
- "model.layers.51.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
439
- "model.layers.51.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
440
- "model.layers.52.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
441
- "model.layers.52.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
442
- "model.layers.52.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
443
- "model.layers.52.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
444
- "model.layers.52.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
445
- "model.layers.52.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
446
- "model.layers.52.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
447
- "model.layers.52.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
448
- "model.layers.52.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
449
- "model.layers.53.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
450
- "model.layers.53.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
451
- "model.layers.53.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
452
- "model.layers.53.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
453
- "model.layers.53.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
454
- "model.layers.53.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
455
- "model.layers.53.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
456
- "model.layers.53.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
457
- "model.layers.53.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
458
- "model.layers.54.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
459
- "model.layers.54.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
460
- "model.layers.54.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
461
- "model.layers.54.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
462
- "model.layers.54.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
463
- "model.layers.54.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
464
- "model.layers.54.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
465
- "model.layers.54.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
466
- "model.layers.54.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
467
- "model.layers.55.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
468
- "model.layers.55.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
469
- "model.layers.55.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
470
- "model.layers.55.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
471
- "model.layers.55.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
472
- "model.layers.55.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
473
- "model.layers.55.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
474
- "model.layers.55.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
475
- "model.layers.55.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
476
- "model.layers.56.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
477
- "model.layers.56.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
478
- "model.layers.56.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
479
- "model.layers.56.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
480
- "model.layers.56.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
481
- "model.layers.56.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
482
- "model.layers.56.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
483
- "model.layers.56.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
484
- "model.layers.56.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
485
- "model.layers.57.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
486
- "model.layers.57.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
487
- "model.layers.57.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
488
- "model.layers.57.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
489
- "model.layers.57.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
490
- "model.layers.57.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
491
- "model.layers.57.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
492
- "model.layers.57.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
493
- "model.layers.57.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
494
- "model.layers.58.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
495
- "model.layers.58.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
496
- "model.layers.58.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
497
- "model.layers.58.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
498
- "model.layers.58.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
499
- "model.layers.58.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
500
- "model.layers.58.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
501
- "model.layers.58.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
502
- "model.layers.58.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
503
- "model.layers.59.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
504
- "model.layers.59.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
505
- "model.layers.59.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
506
- "model.layers.59.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
507
- "model.layers.59.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
508
- "model.layers.59.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
509
- "model.layers.59.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
510
- "model.layers.59.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
511
- "model.layers.59.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
512
- "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
513
- "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
514
- "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
515
- "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
516
- "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
517
- "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
518
- "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
519
- "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
520
- "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
521
- "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
522
- "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
523
- "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
524
- "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
525
- "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
526
- "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
527
- "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
528
- "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
529
- "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
530
- "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
531
- "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
532
- "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
533
- "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
534
- "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
535
- "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
536
- "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
537
- "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
538
- "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
539
- "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
540
- "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
541
- "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
542
- "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
543
- "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
544
- "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
545
- "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
546
- "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
547
- "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
548
- "model.norm.weight": "pytorch_model-00005-of-00006.bin"
549
  }
550
  }
 
3
  "total_size": 40177428480
4
  },
5
  "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00005-of-00005.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00005.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
16
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
17
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
18
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
19
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
20
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
21
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
22
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
23
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
24
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
25
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
26
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
27
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
28
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
29
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
30
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
31
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
32
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
33
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
34
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
35
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
36
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
37
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
38
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
39
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
40
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
41
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
42
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
43
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
44
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
45
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
46
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
47
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
48
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
49
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
50
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
51
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
52
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
53
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
54
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
55
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
56
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
57
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
58
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
59
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
60
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
61
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
62
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
63
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
64
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
65
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
66
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
67
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
68
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
69
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
70
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
71
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
72
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
73
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
74
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
75
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
76
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
77
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
78
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
79
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
80
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
81
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
82
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
83
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
84
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
85
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
86
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
87
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
88
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
89
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
90
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
91
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
92
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
93
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
94
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
95
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
96
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
97
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
98
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
99
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
100
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
101
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
102
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
103
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
104
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
105
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
106
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
107
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
108
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
109
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
110
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
111
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
112
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
113
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
114
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
115
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
116
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
117
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
118
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
119
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
120
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
121
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
122
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
123
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
124
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
125
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
126
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
127
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
128
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
129
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
130
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
131
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
132
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
133
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
134
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
135
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
136
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
137
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
138
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
139
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
140
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
141
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
142
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
143
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
144
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
145
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
146
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
147
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
148
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
149
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
150
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
151
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
152
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
153
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
154
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
155
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
156
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
157
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
158
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
159
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
160
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
161
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
162
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
163
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
164
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
165
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
166
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
167
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
168
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
169
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
170
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
171
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
172
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
173
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
174
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
175
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
176
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
177
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
178
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
179
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
180
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
181
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
182
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
183
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
184
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
185
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
186
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
187
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
188
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
189
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
190
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
191
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
192
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
193
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
194
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
195
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
196
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
197
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
198
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
199
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
200
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
201
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
202
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
203
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
204
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
205
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
206
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
207
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
208
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
209
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
210
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
211
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
212
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
213
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
214
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
215
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
216
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
217
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
218
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
219
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
220
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
221
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
222
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
223
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
224
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
225
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
226
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
227
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
228
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
229
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
230
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
231
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
232
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
233
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
234
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
235
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
236
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
237
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
238
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
239
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
240
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
241
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
242
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
243
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
244
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
245
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
246
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
247
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
248
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
249
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
250
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
251
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
252
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
253
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
254
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
255
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
256
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
257
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
258
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
259
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
260
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
261
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
262
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
263
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
264
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
265
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
266
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
267
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
268
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
269
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
270
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
271
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
272
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
273
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
274
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
275
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
276
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
277
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
278
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
279
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
280
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
281
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
282
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
283
+ "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
284
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
285
+ "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
286
+ "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
287
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
288
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
289
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
290
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
291
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
292
+ "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
293
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
294
+ "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
295
+ "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
296
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
297
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
298
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
299
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
300
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
301
+ "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
302
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
303
+ "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
304
+ "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
305
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
306
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
307
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
308
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
309
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
310
+ "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
311
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
312
+ "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
313
+ "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
314
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
315
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
316
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
317
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
318
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
319
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
320
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
321
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
322
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
323
+ "model.layers.40.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
324
+ "model.layers.40.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
325
+ "model.layers.40.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
326
+ "model.layers.40.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
327
+ "model.layers.40.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
328
+ "model.layers.40.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
329
+ "model.layers.40.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
330
+ "model.layers.40.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
331
+ "model.layers.40.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
332
+ "model.layers.41.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
333
+ "model.layers.41.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
334
+ "model.layers.41.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
335
+ "model.layers.41.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
336
+ "model.layers.41.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
337
+ "model.layers.41.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
338
+ "model.layers.41.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
339
+ "model.layers.41.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
340
+ "model.layers.41.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
341
+ "model.layers.42.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
342
+ "model.layers.42.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
343
+ "model.layers.42.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
344
+ "model.layers.42.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
345
+ "model.layers.42.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
346
+ "model.layers.42.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
347
+ "model.layers.42.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
348
+ "model.layers.42.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
349
+ "model.layers.42.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
350
+ "model.layers.43.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
351
+ "model.layers.43.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
352
+ "model.layers.43.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
353
+ "model.layers.43.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
354
+ "model.layers.43.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
355
+ "model.layers.43.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
356
+ "model.layers.43.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
357
+ "model.layers.43.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
358
+ "model.layers.43.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
359
+ "model.layers.44.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
360
+ "model.layers.44.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
361
+ "model.layers.44.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
362
+ "model.layers.44.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
363
+ "model.layers.44.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
364
+ "model.layers.44.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
365
+ "model.layers.44.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
366
+ "model.layers.44.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
367
+ "model.layers.44.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
368
+ "model.layers.45.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
369
+ "model.layers.45.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
370
+ "model.layers.45.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
371
+ "model.layers.45.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
372
+ "model.layers.45.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
373
+ "model.layers.45.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
374
+ "model.layers.45.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
375
+ "model.layers.45.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
376
+ "model.layers.45.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
377
+ "model.layers.46.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
378
+ "model.layers.46.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
379
+ "model.layers.46.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
380
+ "model.layers.46.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
381
+ "model.layers.46.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
382
+ "model.layers.46.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
383
+ "model.layers.46.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
384
+ "model.layers.46.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
385
+ "model.layers.46.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
386
+ "model.layers.47.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
387
+ "model.layers.47.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
388
+ "model.layers.47.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
389
+ "model.layers.47.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
390
+ "model.layers.47.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
391
+ "model.layers.47.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
392
+ "model.layers.47.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
393
+ "model.layers.47.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
394
+ "model.layers.47.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
395
+ "model.layers.48.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
396
+ "model.layers.48.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
397
+ "model.layers.48.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
398
+ "model.layers.48.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
399
+ "model.layers.48.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
400
+ "model.layers.48.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
401
+ "model.layers.48.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
402
+ "model.layers.48.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
403
+ "model.layers.48.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
404
+ "model.layers.49.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
405
+ "model.layers.49.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
406
+ "model.layers.49.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
407
+ "model.layers.49.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
408
+ "model.layers.49.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
409
+ "model.layers.49.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
410
+ "model.layers.49.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
411
+ "model.layers.49.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
412
+ "model.layers.49.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
413
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
414
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
415
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
416
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
417
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
418
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
419
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
420
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
421
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
422
+ "model.layers.50.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
423
+ "model.layers.50.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
424
+ "model.layers.50.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
425
+ "model.layers.50.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
426
+ "model.layers.50.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
427
+ "model.layers.50.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
428
+ "model.layers.50.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
429
+ "model.layers.50.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
430
+ "model.layers.50.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
431
+ "model.layers.51.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
432
+ "model.layers.51.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
433
+ "model.layers.51.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
434
+ "model.layers.51.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
435
+ "model.layers.51.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
436
+ "model.layers.51.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
437
+ "model.layers.51.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
438
+ "model.layers.51.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
439
+ "model.layers.51.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
440
+ "model.layers.52.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
441
+ "model.layers.52.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
442
+ "model.layers.52.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
443
+ "model.layers.52.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
444
+ "model.layers.52.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
445
+ "model.layers.52.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
446
+ "model.layers.52.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
447
+ "model.layers.52.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
448
+ "model.layers.52.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
449
+ "model.layers.53.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
450
+ "model.layers.53.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
451
+ "model.layers.53.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
452
+ "model.layers.53.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
453
+ "model.layers.53.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
454
+ "model.layers.53.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
455
+ "model.layers.53.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
456
+ "model.layers.53.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
457
+ "model.layers.53.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
458
+ "model.layers.54.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
459
+ "model.layers.54.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
460
+ "model.layers.54.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
461
+ "model.layers.54.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
462
+ "model.layers.54.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
463
+ "model.layers.54.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
464
+ "model.layers.54.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
465
+ "model.layers.54.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
466
+ "model.layers.54.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
467
+ "model.layers.55.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
468
+ "model.layers.55.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
469
+ "model.layers.55.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
470
+ "model.layers.55.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
471
+ "model.layers.55.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
472
+ "model.layers.55.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
473
+ "model.layers.55.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
474
+ "model.layers.55.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
475
+ "model.layers.55.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
476
+ "model.layers.56.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
477
+ "model.layers.56.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
478
+ "model.layers.56.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
479
+ "model.layers.56.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
480
+ "model.layers.56.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
481
+ "model.layers.56.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
482
+ "model.layers.56.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
483
+ "model.layers.56.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
484
+ "model.layers.56.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
485
+ "model.layers.57.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
486
+ "model.layers.57.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
487
+ "model.layers.57.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
488
+ "model.layers.57.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
489
+ "model.layers.57.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
490
+ "model.layers.57.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
491
+ "model.layers.57.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
492
+ "model.layers.57.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
493
+ "model.layers.57.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
494
+ "model.layers.58.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
495
+ "model.layers.58.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
496
+ "model.layers.58.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
497
+ "model.layers.58.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
498
+ "model.layers.58.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
499
+ "model.layers.58.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
500
+ "model.layers.58.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
501
+ "model.layers.58.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
502
+ "model.layers.58.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
503
+ "model.layers.59.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
504
+ "model.layers.59.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
505
+ "model.layers.59.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
506
+ "model.layers.59.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
507
+ "model.layers.59.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
508
+ "model.layers.59.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
509
+ "model.layers.59.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
510
+ "model.layers.59.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
511
+ "model.layers.59.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
512
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
513
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
514
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
515
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
516
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
517
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
518
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
519
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
520
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
521
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
522
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
523
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
524
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
525
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
526
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
527
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
528
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
529
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
530
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
531
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
532
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
533
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
534
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
535
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
536
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
537
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
538
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
539
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
540
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
541
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
542
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
543
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
544
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
545
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
546
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
547
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
548
+ "model.norm.weight": "pytorch_model-00004-of-00005.bin"
549
  }
550
  }
tokenization_internlm.py CHANGED
@@ -1,7 +1,10 @@
1
  # coding=utf-8
2
- # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
  #
4
- # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
 
 
 
5
  #
6
  # Licensed under the Apache License, Version 2.0 (the "License");
7
  # you may not use this file except in compliance with the License.
@@ -15,7 +18,7 @@
15
  # See the License for the specific language governing permissions and
16
  # limitations under the License.
17
 
18
- """Tokenization classes for InternLM."""
19
  import os
20
  from shutil import copyfile
21
  from typing import Any, Dict, List, Optional, Tuple
@@ -32,7 +35,7 @@ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
32
 
33
  PRETRAINED_VOCAB_FILES_MAP = {}
34
 
35
- # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer -> InternLM2Tokenizer
36
  class InternLMTokenizer(PreTrainedTokenizer):
37
  """
38
  Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
@@ -78,6 +81,8 @@ class InternLMTokenizer(PreTrainedTokenizer):
78
  **kwargs,
79
  )
80
 
 
 
81
  @property
82
  def no_prefix_space_tokens(self):
83
  if self._no_prefix_space_tokens is None:
 
1
  # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
  #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
  #
9
  # Licensed under the Apache License, Version 2.0 (the "License");
10
  # you may not use this file except in compliance with the License.
 
18
  # See the License for the specific language governing permissions and
19
  # limitations under the License.
20
 
21
+ """Tokenization classes for IntermLM."""
22
  import os
23
  from shutil import copyfile
24
  from typing import Any, Dict, List, Optional, Tuple
 
35
 
36
  PRETRAINED_VOCAB_FILES_MAP = {}
37
 
38
+
39
  class InternLMTokenizer(PreTrainedTokenizer):
40
  """
41
  Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
 
81
  **kwargs,
82
  )
83
 
84
+ """ Initialization"""
85
+
86
  @property
87
  def no_prefix_space_tokens(self):
88
  if self._no_prefix_space_tokens is None: