v1.0.3
#13
by
vansin
- opened
- config.json +10 -3
- configuration_internlm.py +12 -7
- generation_config.json +1 -2
- modeling_internlm.py +53 -271
- pytorch_model-00001-of-00006.bin → pytorch_model-00001-of-00005.bin +2 -2
- pytorch_model-00002-of-00006.bin → pytorch_model-00002-of-00005.bin +2 -2
- pytorch_model-00003-of-00006.bin → pytorch_model-00003-of-00005.bin +2 -2
- pytorch_model-00004-of-00006.bin → pytorch_model-00004-of-00005.bin +2 -2
- pytorch_model-00006-of-00006.bin → pytorch_model-00005-of-00005.bin +1 -1
- pytorch_model-00005-of-00006.bin +0 -3
- pytorch_model.bin.index.json +543 -543
- tokenization_internlm.py +9 -4
config.json
CHANGED
@@ -20,10 +20,17 @@
|
|
20 |
"num_hidden_layers": 60,
|
21 |
"num_key_value_heads": 40,
|
22 |
"pad_token_id": 2,
|
|
|
23 |
"rms_norm_eps": 1e-06,
|
|
|
|
|
24 |
"tie_word_embeddings": false,
|
25 |
-
"torch_dtype": "
|
26 |
-
"transformers_version": "4.33.
|
27 |
"use_cache": true,
|
28 |
-
"vocab_size": 103168
|
|
|
|
|
|
|
|
|
29 |
}
|
|
|
20 |
"num_hidden_layers": 60,
|
21 |
"num_key_value_heads": 40,
|
22 |
"pad_token_id": 2,
|
23 |
+
"pretraining_tp": 1,
|
24 |
"rms_norm_eps": 1e-06,
|
25 |
+
"rope_scaling": null,
|
26 |
+
"rope_theta": 10000.0,
|
27 |
"tie_word_embeddings": false,
|
28 |
+
"torch_dtype": "bfloat16",
|
29 |
+
"transformers_version": "4.33.1",
|
30 |
"use_cache": true,
|
31 |
+
"vocab_size": 103168,
|
32 |
+
"rotary": {
|
33 |
+
"base": 10000,
|
34 |
+
"type": "dynamic"
|
35 |
+
}
|
36 |
}
|
configuration_internlm.py
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright
|
3 |
#
|
4 |
-
# This code is based on
|
|
|
|
|
|
|
5 |
#
|
6 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
# you may not use this file except in compliance with the License.
|
@@ -24,14 +27,16 @@ logger = logging.get_logger(__name__)
|
|
24 |
INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
25 |
|
26 |
|
27 |
-
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
28 |
class InternLMConfig(PretrainedConfig):
|
29 |
r"""
|
30 |
This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
|
31 |
an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
|
32 |
configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
|
|
|
33 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
35 |
Args:
|
36 |
vocab_size (`int`, *optional*, defaults to 32000):
|
37 |
Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
|
@@ -59,12 +64,16 @@ class InternLMConfig(PretrainedConfig):
|
|
59 |
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
60 |
Whether to tie weight embeddings
|
61 |
Example:
|
|
|
62 |
```python
|
63 |
>>> from transformers import InternLMModel, InternLMConfig
|
|
|
64 |
>>> # Initializing a InternLM internlm-7b style configuration
|
65 |
>>> configuration = InternLMConfig()
|
|
|
66 |
>>> # Initializing a model from the internlm-7b style configuration
|
67 |
>>> model = InternLMModel(configuration)
|
|
|
68 |
>>> # Accessing the model configuration
|
69 |
>>> configuration = model.config
|
70 |
```"""
|
@@ -89,7 +98,6 @@ class InternLMConfig(PretrainedConfig):
|
|
89 |
tie_word_embeddings=False,
|
90 |
bias=True,
|
91 |
rotary={"base": 10000, "type": "dynamic"}, # pylint: disable=W0102
|
92 |
-
attn_implementation="eager",
|
93 |
**kwargs,
|
94 |
):
|
95 |
self.vocab_size = vocab_size
|
@@ -104,9 +112,6 @@ class InternLMConfig(PretrainedConfig):
|
|
104 |
self.use_cache = use_cache
|
105 |
self.bias = bias
|
106 |
self.rotary = rotary
|
107 |
-
self.attn_implementation = attn_implementation
|
108 |
-
if self.attn_implementation is None:
|
109 |
-
self.attn_implementation = "eager"
|
110 |
super().__init__(
|
111 |
pad_token_id=pad_token_id,
|
112 |
bos_token_id=bos_token_id,
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
#
|
9 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
# you may not use this file except in compliance with the License.
|
|
|
27 |
INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
28 |
|
29 |
|
|
|
30 |
class InternLMConfig(PretrainedConfig):
|
31 |
r"""
|
32 |
This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
|
33 |
an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
|
34 |
configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
|
35 |
+
|
36 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
|
40 |
Args:
|
41 |
vocab_size (`int`, *optional*, defaults to 32000):
|
42 |
Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
|
|
|
64 |
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
65 |
Whether to tie weight embeddings
|
66 |
Example:
|
67 |
+
|
68 |
```python
|
69 |
>>> from transformers import InternLMModel, InternLMConfig
|
70 |
+
|
71 |
>>> # Initializing a InternLM internlm-7b style configuration
|
72 |
>>> configuration = InternLMConfig()
|
73 |
+
|
74 |
>>> # Initializing a model from the internlm-7b style configuration
|
75 |
>>> model = InternLMModel(configuration)
|
76 |
+
|
77 |
>>> # Accessing the model configuration
|
78 |
>>> configuration = model.config
|
79 |
```"""
|
|
|
98 |
tie_word_embeddings=False,
|
99 |
bias=True,
|
100 |
rotary={"base": 10000, "type": "dynamic"}, # pylint: disable=W0102
|
|
|
101 |
**kwargs,
|
102 |
):
|
103 |
self.vocab_size = vocab_size
|
|
|
112 |
self.use_cache = use_cache
|
113 |
self.bias = bias
|
114 |
self.rotary = rotary
|
|
|
|
|
|
|
115 |
super().__init__(
|
116 |
pad_token_id=pad_token_id,
|
117 |
bos_token_id=bos_token_id,
|
generation_config.json
CHANGED
@@ -2,6 +2,5 @@
|
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": 1,
|
4 |
"eos_token_id": 2,
|
5 |
-
"
|
6 |
-
"transformers_version": "4.33.2"
|
7 |
}
|
|
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": 1,
|
4 |
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.33.1"
|
|
|
6 |
}
|
modeling_internlm.py
CHANGED
@@ -1,6 +1,10 @@
|
|
1 |
-
#
|
|
|
2 |
#
|
3 |
-
# This code is based on
|
|
|
|
|
|
|
4 |
#
|
5 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
# you may not use this file except in compliance with the License.
|
@@ -24,6 +28,7 @@ import torch.utils.checkpoint
|
|
24 |
from torch import nn
|
25 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
from transformers.activations import ACT2FN
|
|
|
27 |
from transformers.modeling_outputs import (
|
28 |
BaseModelOutputWithPast,
|
29 |
CausalLMOutputWithPast,
|
@@ -37,44 +42,14 @@ from transformers.utils import (
|
|
37 |
replace_return_docstrings,
|
38 |
)
|
39 |
|
40 |
-
try:
|
41 |
-
from transformers.generation.streamers import BaseStreamer
|
42 |
-
except: # noqa # pylint: disable=bare-except
|
43 |
-
BaseStreamer = None
|
44 |
-
|
45 |
from .configuration_internlm import InternLMConfig
|
46 |
|
47 |
logger = logging.get_logger(__name__)
|
48 |
|
49 |
_CONFIG_FOR_DOC = "InternLMConfig"
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
def _import_flash_attn():
|
54 |
-
global flash_attn_func, flash_attn_varlen_func
|
55 |
-
global pad_input, index_first_axis, unpad_input
|
56 |
-
try:
|
57 |
-
from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
|
58 |
-
from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
|
59 |
-
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
60 |
-
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
61 |
-
except ImportError:
|
62 |
-
raise ImportError("flash_attn is not installed.")
|
63 |
-
|
64 |
-
|
65 |
-
def _get_unpad_data(attention_mask):
|
66 |
-
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
67 |
-
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
68 |
-
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
69 |
-
cu_seqlens = nn.functional.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
70 |
-
return (
|
71 |
-
indices,
|
72 |
-
cu_seqlens,
|
73 |
-
max_seqlen_in_batch,
|
74 |
-
)
|
75 |
-
|
76 |
-
|
77 |
-
# Copied from transformers.models.llama.modeling_llama._make_causal_mask
|
78 |
def _make_causal_mask(
|
79 |
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
80 |
):
|
@@ -92,7 +67,7 @@ def _make_causal_mask(
|
|
92 |
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
93 |
|
94 |
|
95 |
-
# Copied from transformers.models.
|
96 |
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
97 |
"""
|
98 |
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
@@ -107,7 +82,6 @@ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int]
|
|
107 |
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
108 |
|
109 |
|
110 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM
|
111 |
class InternLMRMSNorm(nn.Module):
|
112 |
"""RMSNorm implemention."""
|
113 |
|
@@ -130,7 +104,6 @@ class InternLMRMSNorm(nn.Module):
|
|
130 |
return self.weight * hidden_states
|
131 |
|
132 |
|
133 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM
|
134 |
class InternLMRotaryEmbedding(torch.nn.Module):
|
135 |
"""Implement InternLM's rotary embedding.
|
136 |
|
@@ -140,7 +113,6 @@ class InternLMRotaryEmbedding(torch.nn.Module):
|
|
140 |
base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
|
141 |
device (Any, optional): Running device. Defaults to None.
|
142 |
"""
|
143 |
-
|
144 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
145 |
super().__init__()
|
146 |
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
@@ -152,8 +124,8 @@ class InternLMRotaryEmbedding(torch.nn.Module):
|
|
152 |
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
153 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
154 |
emb = torch.cat((freqs, freqs), dim=-1)
|
155 |
-
self.register_buffer("cos_cached", emb.cos()
|
156 |
-
self.register_buffer("sin_cached", emb.sin()
|
157 |
|
158 |
def forward(self, x, seq_len=None):
|
159 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
@@ -164,15 +136,14 @@ class InternLMRotaryEmbedding(torch.nn.Module):
|
|
164 |
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
165 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
166 |
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
167 |
-
self.register_buffer("cos_cached", emb.cos(), persistent=False)
|
168 |
-
self.register_buffer("sin_cached", emb.sin(), persistent=False)
|
169 |
return (
|
170 |
-
self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
|
171 |
-
self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
|
172 |
)
|
173 |
|
174 |
|
175 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM
|
176 |
class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
|
177 |
"""Implement InternLM's DyanmicNTK extrapolation method, thereby broadening the model support context to 16K.
|
178 |
|
@@ -187,7 +158,7 @@ class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
|
|
187 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
188 |
super().__init__()
|
189 |
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
190 |
-
self.register_buffer("inv_freq", inv_freq
|
191 |
self.dim = dim
|
192 |
self.base = base
|
193 |
self.scaling_factor = scaling_factor
|
@@ -199,8 +170,8 @@ class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
|
|
199 |
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
200 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
201 |
emb = torch.cat((freqs, freqs), dim=-1)
|
202 |
-
self.register_buffer("cos_cached", emb.cos(), persistent=False)
|
203 |
-
self.register_buffer("sin_cached", emb.sin(), persistent=False)
|
204 |
|
205 |
def _update_cached(self, x, seq_len=None):
|
206 |
self.max_seq_len_cached = max(seq_len, self.max_position_embeddings)
|
@@ -214,8 +185,8 @@ class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
|
|
214 |
t = torch.arange(self.max_seq_len_cached, device=inv_freq.device, dtype=inv_freq.dtype)
|
215 |
freqs = torch.einsum("i,j->ij", t, inv_freq)
|
216 |
emb = torch.cat((freqs, freqs), dim=-1)
|
217 |
-
self.register_buffer("cos_cached", emb.cos(), persistent=False)
|
218 |
-
self.register_buffer("sin_cached", emb.sin(), persistent=False)
|
219 |
|
220 |
def forward(self, x, seq_len=None):
|
221 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
@@ -228,12 +199,11 @@ class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
|
|
228 |
self._update_cached(x, seq_len)
|
229 |
|
230 |
return (
|
231 |
-
self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
|
232 |
-
self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
|
233 |
)
|
234 |
|
235 |
|
236 |
-
# Copied from transformers.model.llama.modeling_llama.rotate_half
|
237 |
def rotate_half(x):
|
238 |
"""Rotates half the hidden dims of the input."""
|
239 |
x1 = x[..., : x.shape[-1] // 2]
|
@@ -241,28 +211,25 @@ def rotate_half(x):
|
|
241 |
return torch.cat((-x2, x1), dim=-1)
|
242 |
|
243 |
|
244 |
-
# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
|
245 |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
position_ids = torch.stack([torch.cat([torch.ones(max_length - w, dtype=torch.long), torch.arange(w)]) for w in position_ids])
|
254 |
-
k_cos = cos[position_ids].unsqueeze(1).expand(k.shape)
|
255 |
-
k_sin = sin[position_ids].unsqueeze(1).expand(k.shape)
|
256 |
-
k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
|
257 |
else:
|
258 |
-
cos = cos[position_ids].unsqueeze(1)
|
259 |
-
sin = sin[position_ids].unsqueeze(1)
|
260 |
q_embed = (q * cos) + (rotate_half(q) * sin)
|
|
|
|
|
|
|
|
|
261 |
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
|
262 |
return q_embed, k_embed
|
263 |
|
264 |
|
265 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaMLP with Llama->InternLM
|
266 |
class InternLMMLP(nn.Module):
|
267 |
def __init__(
|
268 |
self,
|
@@ -280,7 +247,6 @@ class InternLMMLP(nn.Module):
|
|
280 |
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
281 |
|
282 |
|
283 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->InternLM
|
284 |
class InternLMAttention(nn.Module):
|
285 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
286 |
|
@@ -302,7 +268,6 @@ class InternLMAttention(nn.Module):
|
|
302 |
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
|
303 |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
304 |
self.rotary_emb = self._init_rope()
|
305 |
-
self.is_causal = True
|
306 |
|
307 |
def _init_rope(self):
|
308 |
if self.config.rotary["type"] == "origin":
|
@@ -345,6 +310,7 @@ class InternLMAttention(nn.Module):
|
|
345 |
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
346 |
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
347 |
|
|
|
348 |
past_key_value = (key_states, value_states) if use_cache else None
|
349 |
|
350 |
kv_seq_len = key_states.shape[-2]
|
@@ -387,163 +353,12 @@ class InternLMAttention(nn.Module):
|
|
387 |
|
388 |
return attn_output, attn_weights, past_key_value
|
389 |
|
390 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->InternLM
|
391 |
-
class InternLMFlashAttention2(InternLMAttention):
|
392 |
-
"""
|
393 |
-
InternLM flash attention module. This module inherits from `InternLMAttention` as the weights of the module stays
|
394 |
-
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
395 |
-
flash attention and deal with padding tokens in case the input contains any of them.
|
396 |
-
"""
|
397 |
-
|
398 |
-
def forward(
|
399 |
-
self,
|
400 |
-
hidden_states: torch.Tensor,
|
401 |
-
attention_mask: Optional[torch.LongTensor] = None,
|
402 |
-
position_ids: Optional[torch.LongTensor] = None,
|
403 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
404 |
-
output_attentions: bool = False,
|
405 |
-
use_cache: bool = False,
|
406 |
-
**kwargs,
|
407 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
408 |
-
# InternLMFlashAttention2 attention does not support output_attentions
|
409 |
-
bsz, q_len, _ = hidden_states.size()
|
410 |
-
|
411 |
-
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
412 |
-
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
413 |
-
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
414 |
-
|
415 |
-
if past_key_value is not None:
|
416 |
-
# reuse k, v, self_attention
|
417 |
-
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
418 |
-
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
419 |
-
|
420 |
-
past_key_value = (key_states, value_states) if use_cache else None
|
421 |
-
|
422 |
-
kv_seq_len = key_states.shape[-2]
|
423 |
-
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
424 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
425 |
-
|
426 |
-
query_states = query_states.transpose(1, 2)
|
427 |
-
key_states = key_states.transpose(1, 2)
|
428 |
-
value_states = value_states.transpose(1, 2)
|
429 |
-
|
430 |
-
attn_output = self._flash_attention_forward(
|
431 |
-
query_states, key_states, value_states, attention_mask, q_len
|
432 |
-
)
|
433 |
-
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
434 |
-
attn_output = self.o_proj(attn_output)
|
435 |
-
|
436 |
-
if not output_attentions:
|
437 |
-
attn_weights = None
|
438 |
-
|
439 |
-
return attn_output, attn_weights, past_key_value
|
440 |
-
|
441 |
-
def _flash_attention_forward(
|
442 |
-
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
443 |
-
):
|
444 |
-
"""
|
445 |
-
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
446 |
-
first unpad the input, then computes the attention scores and pad the final attention scores.
|
447 |
-
|
448 |
-
Args:
|
449 |
-
query_states (`torch.Tensor`):
|
450 |
-
Input query states to be passed to Flash Attention API
|
451 |
-
key_states (`torch.Tensor`):
|
452 |
-
Input key states to be passed to Flash Attention API
|
453 |
-
value_states (`torch.Tensor`):
|
454 |
-
Input value states to be passed to Flash Attention API
|
455 |
-
attention_mask (`torch.Tensor`):
|
456 |
-
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
457 |
-
position of padding tokens and 1 for the position of non-padding tokens.
|
458 |
-
dropout (`int`, *optional*):
|
459 |
-
Attention dropout
|
460 |
-
softmax_scale (`float`, *optional*):
|
461 |
-
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
462 |
-
"""
|
463 |
-
# Contains at least one padding token in the sequence
|
464 |
-
causal = self.is_causal and query_length != 1
|
465 |
-
if attention_mask is not None:
|
466 |
-
batch_size = query_states.shape[0]
|
467 |
-
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
|
468 |
-
query_states, key_states, value_states, attention_mask, query_length
|
469 |
-
)
|
470 |
-
|
471 |
-
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
472 |
-
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
473 |
-
|
474 |
-
attn_output_unpad = flash_attn_varlen_func(
|
475 |
-
query_states,
|
476 |
-
key_states,
|
477 |
-
value_states,
|
478 |
-
cu_seqlens_q=cu_seqlens_q,
|
479 |
-
cu_seqlens_k=cu_seqlens_k,
|
480 |
-
max_seqlen_q=max_seqlen_in_batch_q,
|
481 |
-
max_seqlen_k=max_seqlen_in_batch_k,
|
482 |
-
dropout_p=dropout,
|
483 |
-
softmax_scale=softmax_scale,
|
484 |
-
causal=causal,
|
485 |
-
)
|
486 |
-
|
487 |
-
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
488 |
-
else:
|
489 |
-
attn_output = flash_attn_func(
|
490 |
-
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
491 |
-
)
|
492 |
-
|
493 |
-
return attn_output
|
494 |
-
|
495 |
-
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
496 |
-
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
497 |
-
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
498 |
-
|
499 |
-
key_layer = index_first_axis(
|
500 |
-
key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
501 |
-
)
|
502 |
-
value_layer = index_first_axis(
|
503 |
-
value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
504 |
-
)
|
505 |
-
|
506 |
-
if query_length == kv_seq_len:
|
507 |
-
query_layer = index_first_axis(
|
508 |
-
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
509 |
-
)
|
510 |
-
cu_seqlens_q = cu_seqlens_k
|
511 |
-
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
512 |
-
indices_q = indices_k
|
513 |
-
elif query_length == 1:
|
514 |
-
max_seqlen_in_batch_q = 1
|
515 |
-
cu_seqlens_q = torch.arange(
|
516 |
-
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
517 |
-
) # There is a memcpy here, that is very bad.
|
518 |
-
indices_q = cu_seqlens_q[:-1]
|
519 |
-
query_layer = query_layer.squeeze(1)
|
520 |
-
else:
|
521 |
-
# The -q_len: slice assumes left padding.
|
522 |
-
attention_mask = attention_mask[:, -query_length:]
|
523 |
-
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
524 |
-
|
525 |
-
return (
|
526 |
-
query_layer,
|
527 |
-
key_layer,
|
528 |
-
value_layer,
|
529 |
-
indices_q.to(torch.int64),
|
530 |
-
(cu_seqlens_q, cu_seqlens_k),
|
531 |
-
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
532 |
-
)
|
533 |
-
|
534 |
-
INTERNLM_ATTENTION_CLASSES = {
|
535 |
-
"eager": InternLMAttention,
|
536 |
-
"flash_attention_2": InternLMFlashAttention2,
|
537 |
-
}
|
538 |
|
539 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->InternLM
|
540 |
class InternLMDecoderLayer(nn.Module):
|
541 |
def __init__(self, config: InternLMConfig):
|
542 |
super().__init__()
|
543 |
self.hidden_size = config.hidden_size
|
544 |
-
|
545 |
-
self.self_attn = INTERNLM_ATTENTION_CLASSES[config.attn_implementation](config=config)
|
546 |
-
|
547 |
self.mlp = InternLMMLP(
|
548 |
hidden_size=self.hidden_size,
|
549 |
intermediate_size=config.intermediate_size,
|
@@ -622,7 +437,6 @@ INTERNLM_START_DOCSTRING = r"""
|
|
622 |
"""
|
623 |
|
624 |
|
625 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaPretrainedModel with Llama->InternLM
|
626 |
@add_start_docstrings(
|
627 |
"The bare InternLM Model outputting raw hidden-states without any specific head on top.",
|
628 |
INTERNLM_START_DOCSTRING,
|
@@ -704,7 +518,6 @@ INTERNLM_INPUTS_DOCSTRING = r"""
|
|
704 |
"""
|
705 |
|
706 |
|
707 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaModel with Llama->InternLM
|
708 |
@add_start_docstrings(
|
709 |
"The bare InternLM Model outputting raw hidden-states without any specific head on top.",
|
710 |
INTERNLM_START_DOCSTRING,
|
@@ -722,10 +535,8 @@ class InternLMModel(InternLMPreTrainedModel):
|
|
722 |
super().__init__(config)
|
723 |
self.padding_idx = config.pad_token_id
|
724 |
self.vocab_size = config.vocab_size
|
725 |
-
self.config = config
|
726 |
|
727 |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
728 |
-
|
729 |
self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
730 |
self.norm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
731 |
|
@@ -784,9 +595,6 @@ class InternLMModel(InternLMPreTrainedModel):
|
|
784 |
|
785 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
786 |
|
787 |
-
if self.config.attn_implementation == "flash_attention_2":
|
788 |
-
_import_flash_attn()
|
789 |
-
|
790 |
# retrieve input_ids and inputs_embeds
|
791 |
if input_ids is not None and inputs_embeds is not None:
|
792 |
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
@@ -815,16 +623,14 @@ class InternLMModel(InternLMPreTrainedModel):
|
|
815 |
|
816 |
if inputs_embeds is None:
|
817 |
inputs_embeds = self.embed_tokens(input_ids)
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
attention_mask = torch.ones(
|
823 |
-
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
824 |
-
)
|
825 |
-
attention_mask = self._prepare_decoder_attention_mask(
|
826 |
-
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
827 |
)
|
|
|
|
|
|
|
828 |
|
829 |
hidden_states = inputs_embeds
|
830 |
|
@@ -897,7 +703,6 @@ class InternLMModel(InternLMPreTrainedModel):
|
|
897 |
)
|
898 |
|
899 |
|
900 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with Llama->InternLM
|
901 |
class InternLMForCausalLM(InternLMPreTrainedModel):
|
902 |
_auto_class = "AutoModelForCausalLM"
|
903 |
|
@@ -950,7 +755,6 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
|
|
950 |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
951 |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
952 |
Returns:
|
953 |
-
|
954 |
Example:
|
955 |
```python
|
956 |
>>> from transformers import AutoTokenizer, InternLMForCausalLM
|
@@ -962,9 +766,7 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
|
|
962 |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
963 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
964 |
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
965 |
-
```
|
966 |
-
|
967 |
-
"""
|
968 |
|
969 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
970 |
output_hidden_states = (
|
@@ -1049,17 +851,12 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
|
|
1049 |
for layer_past in past_key_values:
|
1050 |
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
1051 |
return reordered_past
|
1052 |
-
|
1053 |
-
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = []
|
1054 |
-
|
1055 |
-
prompt = ""
|
1056 |
-
else:
|
1057 |
-
prompt = tokenizer.bos_token
|
1058 |
-
if meta_instruction:
|
1059 |
-
prompt += f"""<|System|>:{meta_instruction}\n"""
|
1060 |
for record in history:
|
1061 |
-
prompt += f"""<|User|>:{record[0]}
|
1062 |
-
prompt += f"""<|User|>:{query}
|
1063 |
return tokenizer([prompt], return_tensors="pt")
|
1064 |
|
1065 |
@torch.no_grad()
|
@@ -1073,12 +870,9 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
|
|
1073 |
do_sample: bool = True,
|
1074 |
temperature: float = 0.8,
|
1075 |
top_p: float = 0.8,
|
1076 |
-
meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n"
|
1077 |
-
"- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
|
1078 |
-
"- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.",
|
1079 |
**kwargs,
|
1080 |
):
|
1081 |
-
inputs = self.build_inputs(tokenizer, query, history
|
1082 |
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
1083 |
outputs = self.generate(
|
1084 |
**inputs,
|
@@ -1113,11 +907,6 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
|
|
1113 |
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
|
1114 |
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
|
1115 |
"""
|
1116 |
-
if BaseStreamer is None:
|
1117 |
-
raise ModuleNotFoundError(
|
1118 |
-
"The version of `transformers` is too low. Please make sure "
|
1119 |
-
"that you have installed `transformers>=4.28.0`."
|
1120 |
-
)
|
1121 |
|
1122 |
response_queue = queue.Queue(maxsize=20)
|
1123 |
|
@@ -1129,7 +918,6 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
|
|
1129 |
self.query = query
|
1130 |
self.history = history
|
1131 |
self.response = ""
|
1132 |
-
self.cache = []
|
1133 |
self.received_inputs = False
|
1134 |
self.queue.put((self.response, history + [(self.query, self.response)]))
|
1135 |
|
@@ -1144,17 +932,11 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
|
|
1144 |
self.received_inputs = True
|
1145 |
return
|
1146 |
|
1147 |
-
self.
|
1148 |
-
token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
|
1149 |
-
if "�" in token and len(token) <= 5:
|
1150 |
-
return
|
1151 |
if token.strip() != "<eoa>":
|
1152 |
self.response = self.response + token
|
1153 |
history = self.history + [(self.query, self.response)]
|
1154 |
self.queue.put((self.response, history))
|
1155 |
-
self.cache = []
|
1156 |
-
else:
|
1157 |
-
self.end()
|
1158 |
|
1159 |
def end(self):
|
1160 |
self.queue.put(None)
|
@@ -1301,4 +1083,4 @@ class InternLMForSequenceClassification(InternLMPreTrainedModel):
|
|
1301 |
past_key_values=transformer_outputs.past_key_values,
|
1302 |
hidden_states=transformer_outputs.hidden_states,
|
1303 |
attentions=transformer_outputs.attentions,
|
1304 |
-
)
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
#
|
9 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
# you may not use this file except in compliance with the License.
|
|
|
28 |
from torch import nn
|
29 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
from transformers.activations import ACT2FN
|
31 |
+
from transformers.generation.streamers import BaseStreamer
|
32 |
from transformers.modeling_outputs import (
|
33 |
BaseModelOutputWithPast,
|
34 |
CausalLMOutputWithPast,
|
|
|
42 |
replace_return_docstrings,
|
43 |
)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
45 |
from .configuration_internlm import InternLMConfig
|
46 |
|
47 |
logger = logging.get_logger(__name__)
|
48 |
|
49 |
_CONFIG_FOR_DOC = "InternLMConfig"
|
50 |
|
51 |
+
|
52 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
def _make_causal_mask(
|
54 |
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
55 |
):
|
|
|
67 |
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
68 |
|
69 |
|
70 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
71 |
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
72 |
"""
|
73 |
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
|
|
82 |
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
83 |
|
84 |
|
|
|
85 |
class InternLMRMSNorm(nn.Module):
|
86 |
"""RMSNorm implemention."""
|
87 |
|
|
|
104 |
return self.weight * hidden_states
|
105 |
|
106 |
|
|
|
107 |
class InternLMRotaryEmbedding(torch.nn.Module):
|
108 |
"""Implement InternLM's rotary embedding.
|
109 |
|
|
|
113 |
base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
|
114 |
device (Any, optional): Running device. Defaults to None.
|
115 |
"""
|
|
|
116 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
117 |
super().__init__()
|
118 |
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
|
|
124 |
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
125 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
126 |
emb = torch.cat((freqs, freqs), dim=-1)
|
127 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
128 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
129 |
|
130 |
def forward(self, x, seq_len=None):
|
131 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
|
|
136 |
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
137 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
138 |
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
139 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
140 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
141 |
return (
|
142 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
143 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
144 |
)
|
145 |
|
146 |
|
|
|
147 |
class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
|
148 |
"""Implement InternLM's DyanmicNTK extrapolation method, thereby broadening the model support context to 16K.
|
149 |
|
|
|
158 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
159 |
super().__init__()
|
160 |
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
161 |
+
self.register_buffer("inv_freq", inv_freq)
|
162 |
self.dim = dim
|
163 |
self.base = base
|
164 |
self.scaling_factor = scaling_factor
|
|
|
170 |
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
171 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
172 |
emb = torch.cat((freqs, freqs), dim=-1)
|
173 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
174 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
175 |
|
176 |
def _update_cached(self, x, seq_len=None):
|
177 |
self.max_seq_len_cached = max(seq_len, self.max_position_embeddings)
|
|
|
185 |
t = torch.arange(self.max_seq_len_cached, device=inv_freq.device, dtype=inv_freq.dtype)
|
186 |
freqs = torch.einsum("i,j->ij", t, inv_freq)
|
187 |
emb = torch.cat((freqs, freqs), dim=-1)
|
188 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
189 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
190 |
|
191 |
def forward(self, x, seq_len=None):
|
192 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
|
|
199 |
self._update_cached(x, seq_len)
|
200 |
|
201 |
return (
|
202 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
203 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
204 |
)
|
205 |
|
206 |
|
|
|
207 |
def rotate_half(x):
|
208 |
"""Rotates half the hidden dims of the input."""
|
209 |
x1 = x[..., : x.shape[-1] // 2]
|
|
|
211 |
return torch.cat((-x2, x1), dim=-1)
|
212 |
|
213 |
|
|
|
214 |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
215 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
216 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
217 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
218 |
+
cos = cos.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
|
219 |
+
sin = sin.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
|
220 |
+
if q.size(2) == 1:
|
221 |
+
q_embed = (q * cos[:, :, -1, :]) + (rotate_half(q) * sin[:, :, -1, :])
|
|
|
|
|
|
|
|
|
222 |
else:
|
|
|
|
|
223 |
q_embed = (q * cos) + (rotate_half(q) * sin)
|
224 |
+
|
225 |
+
if k.size(2) == 1:
|
226 |
+
k_embed = (k * cos[:, :, -1, :]) + (rotate_half(k) * sin[:, :, -1, :])
|
227 |
+
else:
|
228 |
k_embed = (k * cos) + (rotate_half(k) * sin)
|
229 |
+
|
230 |
return q_embed, k_embed
|
231 |
|
232 |
|
|
|
233 |
class InternLMMLP(nn.Module):
|
234 |
def __init__(
|
235 |
self,
|
|
|
247 |
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
248 |
|
249 |
|
|
|
250 |
class InternLMAttention(nn.Module):
|
251 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
252 |
|
|
|
268 |
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
|
269 |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
270 |
self.rotary_emb = self._init_rope()
|
|
|
271 |
|
272 |
def _init_rope(self):
|
273 |
if self.config.rotary["type"] == "origin":
|
|
|
310 |
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
311 |
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
312 |
|
313 |
+
# print(use_cache)
|
314 |
past_key_value = (key_states, value_states) if use_cache else None
|
315 |
|
316 |
kv_seq_len = key_states.shape[-2]
|
|
|
353 |
|
354 |
return attn_output, attn_weights, past_key_value
|
355 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
|
|
|
357 |
class InternLMDecoderLayer(nn.Module):
|
358 |
def __init__(self, config: InternLMConfig):
|
359 |
super().__init__()
|
360 |
self.hidden_size = config.hidden_size
|
361 |
+
self.self_attn = InternLMAttention(config=config)
|
|
|
|
|
362 |
self.mlp = InternLMMLP(
|
363 |
hidden_size=self.hidden_size,
|
364 |
intermediate_size=config.intermediate_size,
|
|
|
437 |
"""
|
438 |
|
439 |
|
|
|
440 |
@add_start_docstrings(
|
441 |
"The bare InternLM Model outputting raw hidden-states without any specific head on top.",
|
442 |
INTERNLM_START_DOCSTRING,
|
|
|
518 |
"""
|
519 |
|
520 |
|
|
|
521 |
@add_start_docstrings(
|
522 |
"The bare InternLM Model outputting raw hidden-states without any specific head on top.",
|
523 |
INTERNLM_START_DOCSTRING,
|
|
|
535 |
super().__init__(config)
|
536 |
self.padding_idx = config.pad_token_id
|
537 |
self.vocab_size = config.vocab_size
|
|
|
538 |
|
539 |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
|
540 |
self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
541 |
self.norm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
542 |
|
|
|
595 |
|
596 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
597 |
|
|
|
|
|
|
|
598 |
# retrieve input_ids and inputs_embeds
|
599 |
if input_ids is not None and inputs_embeds is not None:
|
600 |
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
|
|
623 |
|
624 |
if inputs_embeds is None:
|
625 |
inputs_embeds = self.embed_tokens(input_ids)
|
626 |
+
# embed positions
|
627 |
+
if attention_mask is None:
|
628 |
+
attention_mask = torch.ones(
|
629 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
|
|
|
|
|
|
|
|
|
|
630 |
)
|
631 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
632 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
633 |
+
)
|
634 |
|
635 |
hidden_states = inputs_embeds
|
636 |
|
|
|
703 |
)
|
704 |
|
705 |
|
|
|
706 |
class InternLMForCausalLM(InternLMPreTrainedModel):
|
707 |
_auto_class = "AutoModelForCausalLM"
|
708 |
|
|
|
755 |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
756 |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
757 |
Returns:
|
|
|
758 |
Example:
|
759 |
```python
|
760 |
>>> from transformers import AutoTokenizer, InternLMForCausalLM
|
|
|
766 |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
767 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
768 |
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
769 |
+
```"""
|
|
|
|
|
770 |
|
771 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
772 |
output_hidden_states = (
|
|
|
851 |
for layer_past in past_key_values:
|
852 |
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
853 |
return reordered_past
|
854 |
+
|
855 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = []):
|
856 |
+
prompt = ""
|
|
|
|
|
|
|
|
|
|
|
857 |
for record in history:
|
858 |
+
prompt += f"""<|User|>:{record[0]}<eoh>\n<|Bot|>:{record[1]}<eoa>\n"""
|
859 |
+
prompt += f"""<|User|>:{query}<eoh>\n<|Bot|>:"""
|
860 |
return tokenizer([prompt], return_tensors="pt")
|
861 |
|
862 |
@torch.no_grad()
|
|
|
870 |
do_sample: bool = True,
|
871 |
temperature: float = 0.8,
|
872 |
top_p: float = 0.8,
|
|
|
|
|
|
|
873 |
**kwargs,
|
874 |
):
|
875 |
+
inputs = self.build_inputs(tokenizer, query, history)
|
876 |
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
877 |
outputs = self.generate(
|
878 |
**inputs,
|
|
|
907 |
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
|
908 |
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
|
909 |
"""
|
|
|
|
|
|
|
|
|
|
|
910 |
|
911 |
response_queue = queue.Queue(maxsize=20)
|
912 |
|
|
|
918 |
self.query = query
|
919 |
self.history = history
|
920 |
self.response = ""
|
|
|
921 |
self.received_inputs = False
|
922 |
self.queue.put((self.response, history + [(self.query, self.response)]))
|
923 |
|
|
|
932 |
self.received_inputs = True
|
933 |
return
|
934 |
|
935 |
+
token = self.tokenizer.decode([value[-1]], skip_special_tokens=True)
|
|
|
|
|
|
|
936 |
if token.strip() != "<eoa>":
|
937 |
self.response = self.response + token
|
938 |
history = self.history + [(self.query, self.response)]
|
939 |
self.queue.put((self.response, history))
|
|
|
|
|
|
|
940 |
|
941 |
def end(self):
|
942 |
self.queue.put(None)
|
|
|
1083 |
past_key_values=transformer_outputs.past_key_values,
|
1084 |
hidden_states=transformer_outputs.hidden_states,
|
1085 |
attentions=transformer_outputs.attentions,
|
1086 |
+
)
|
pytorch_model-00001-of-00006.bin → pytorch_model-00001-of-00005.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeba743507872c45e7cf951d7996bce448d8deada841d055d2ac03948af0c2b7
|
3 |
+
size 9990647029
|
pytorch_model-00002-of-00006.bin → pytorch_model-00002-of-00005.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a11c8737fce8d6be9a8f6eb0faa44016c94813aed1d50a757ca32abece4ed461
|
3 |
+
size 9956594199
|
pytorch_model-00003-of-00006.bin → pytorch_model-00003-of-00005.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c64167ce104e9a576da50f89a398ac2124734621c45e12ea0addbac99ad87ac
|
3 |
+
size 9867486361
|
pytorch_model-00004-of-00006.bin → pytorch_model-00004-of-00005.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40e22421695e3206bc85f0a4839641370bc8277ab689ff0e5d75e708d51f8691
|
3 |
+
size 9306483281
|
pytorch_model-00006-of-00006.bin → pytorch_model-00005-of-00005.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1056441258
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:263f29c6331d8951fd454d4bbd2991d422bbcfb5b07d4acbb0e75aaf53b1a76c
|
3 |
size 1056441258
|
pytorch_model-00005-of-00006.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:4182de7c0df21447a5b7ed8cbb68162e85be061f23ddab73b8be157049fb9e31
|
3 |
-
size 7403239886
|
|
|
|
|
|
|
|
pytorch_model.bin.index.json
CHANGED
@@ -3,548 +3,548 @@
|
|
3 |
"total_size": 40177428480
|
4 |
},
|
5 |
"weight_map": {
|
6 |
-
"lm_head.weight": "pytorch_model-
|
7 |
-
"model.embed_tokens.weight": "pytorch_model-00001-of-
|
8 |
-
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-
|
9 |
-
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-
|
10 |
-
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
11 |
-
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-
|
12 |
-
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
13 |
-
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
14 |
-
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
15 |
-
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
16 |
-
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
17 |
-
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-
|
18 |
-
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-
|
19 |
-
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
20 |
-
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-
|
21 |
-
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
22 |
-
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
23 |
-
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
24 |
-
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
25 |
-
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
26 |
-
"model.layers.10.input_layernorm.weight": "pytorch_model-
|
27 |
-
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-
|
28 |
-
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
29 |
-
"model.layers.10.mlp.up_proj.weight": "pytorch_model-
|
30 |
-
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-
|
31 |
-
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
32 |
-
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
33 |
-
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
34 |
-
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
35 |
-
"model.layers.11.input_layernorm.weight": "pytorch_model-
|
36 |
-
"model.layers.11.mlp.down_proj.weight": "pytorch_model-
|
37 |
-
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-
|
38 |
-
"model.layers.11.mlp.up_proj.weight": "pytorch_model-
|
39 |
-
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-
|
40 |
-
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-
|
41 |
-
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-
|
42 |
-
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-
|
43 |
-
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-
|
44 |
-
"model.layers.12.input_layernorm.weight": "pytorch_model-
|
45 |
-
"model.layers.12.mlp.down_proj.weight": "pytorch_model-
|
46 |
-
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-
|
47 |
-
"model.layers.12.mlp.up_proj.weight": "pytorch_model-
|
48 |
-
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-
|
49 |
-
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-
|
50 |
-
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-
|
51 |
-
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-
|
52 |
-
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-
|
53 |
-
"model.layers.13.input_layernorm.weight": "pytorch_model-
|
54 |
-
"model.layers.13.mlp.down_proj.weight": "pytorch_model-
|
55 |
-
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-
|
56 |
-
"model.layers.13.mlp.up_proj.weight": "pytorch_model-
|
57 |
-
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-
|
58 |
-
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-
|
59 |
-
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-
|
60 |
-
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-
|
61 |
-
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-
|
62 |
-
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-
|
63 |
-
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-
|
64 |
-
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
65 |
-
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-
|
66 |
-
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
67 |
-
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
68 |
-
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
69 |
-
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-
|
70 |
-
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
71 |
-
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-
|
72 |
-
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-
|
73 |
-
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
74 |
-
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-
|
75 |
-
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
76 |
-
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
77 |
-
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
78 |
-
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
79 |
-
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
80 |
-
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-
|
81 |
-
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-
|
82 |
-
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
83 |
-
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-
|
84 |
-
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
85 |
-
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
86 |
-
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
87 |
-
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
88 |
-
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
89 |
-
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-
|
90 |
-
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-
|
91 |
-
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
92 |
-
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-
|
93 |
-
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
94 |
-
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
95 |
-
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
96 |
-
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
97 |
-
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
98 |
-
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-
|
99 |
-
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-
|
100 |
-
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
101 |
-
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-
|
102 |
-
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
103 |
-
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
104 |
-
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
105 |
-
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
106 |
-
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
107 |
-
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-
|
108 |
-
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-
|
109 |
-
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
110 |
-
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-
|
111 |
-
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
112 |
-
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
113 |
-
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
114 |
-
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
115 |
-
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
116 |
-
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-
|
117 |
-
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-
|
118 |
-
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
119 |
-
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-
|
120 |
-
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
121 |
-
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
122 |
-
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
123 |
-
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
124 |
-
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
125 |
-
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-
|
126 |
-
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-
|
127 |
-
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
128 |
-
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-
|
129 |
-
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
130 |
-
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
131 |
-
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
132 |
-
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
133 |
-
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
134 |
-
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-
|
135 |
-
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-
|
136 |
-
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
137 |
-
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-
|
138 |
-
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
139 |
-
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
140 |
-
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
141 |
-
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
142 |
-
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
143 |
-
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-
|
144 |
-
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-
|
145 |
-
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
146 |
-
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-
|
147 |
-
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
148 |
-
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
149 |
-
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
150 |
-
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
151 |
-
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
152 |
-
"model.layers.23.input_layernorm.weight": "pytorch_model-
|
153 |
-
"model.layers.23.mlp.down_proj.weight": "pytorch_model-
|
154 |
-
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-
|
155 |
-
"model.layers.23.mlp.up_proj.weight": "pytorch_model-
|
156 |
-
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-
|
157 |
-
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
158 |
-
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
159 |
-
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
160 |
-
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
161 |
-
"model.layers.24.input_layernorm.weight": "pytorch_model-
|
162 |
-
"model.layers.24.mlp.down_proj.weight": "pytorch_model-
|
163 |
-
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-
|
164 |
-
"model.layers.24.mlp.up_proj.weight": "pytorch_model-
|
165 |
-
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-
|
166 |
-
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-
|
167 |
-
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-
|
168 |
-
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-
|
169 |
-
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-
|
170 |
-
"model.layers.25.input_layernorm.weight": "pytorch_model-
|
171 |
-
"model.layers.25.mlp.down_proj.weight": "pytorch_model-
|
172 |
-
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-
|
173 |
-
"model.layers.25.mlp.up_proj.weight": "pytorch_model-
|
174 |
-
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-
|
175 |
-
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-
|
176 |
-
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-
|
177 |
-
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-
|
178 |
-
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-
|
179 |
-
"model.layers.26.input_layernorm.weight": "pytorch_model-
|
180 |
-
"model.layers.26.mlp.down_proj.weight": "pytorch_model-
|
181 |
-
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-
|
182 |
-
"model.layers.26.mlp.up_proj.weight": "pytorch_model-
|
183 |
-
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-
|
184 |
-
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-
|
185 |
-
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-
|
186 |
-
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-
|
187 |
-
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-
|
188 |
-
"model.layers.27.input_layernorm.weight": "pytorch_model-
|
189 |
-
"model.layers.27.mlp.down_proj.weight": "pytorch_model-
|
190 |
-
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-
|
191 |
-
"model.layers.27.mlp.up_proj.weight": "pytorch_model-
|
192 |
-
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-
|
193 |
-
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-
|
194 |
-
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-
|
195 |
-
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-
|
196 |
-
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-
|
197 |
-
"model.layers.28.input_layernorm.weight": "pytorch_model-
|
198 |
-
"model.layers.28.mlp.down_proj.weight": "pytorch_model-
|
199 |
-
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-
|
200 |
-
"model.layers.28.mlp.up_proj.weight": "pytorch_model-
|
201 |
-
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-
|
202 |
-
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-
|
203 |
-
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-
|
204 |
-
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-
|
205 |
-
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-
|
206 |
-
"model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-
|
207 |
-
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-
|
208 |
-
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-
|
209 |
-
"model.layers.29.mlp.up_proj.weight": "pytorch_model-
|
210 |
-
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-
|
211 |
-
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-
|
212 |
-
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-
|
213 |
-
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-
|
214 |
-
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-
|
215 |
-
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-
|
216 |
-
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-
|
217 |
-
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
218 |
-
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-
|
219 |
-
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
220 |
-
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
221 |
-
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
222 |
-
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
223 |
-
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
224 |
-
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-
|
225 |
-
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-
|
226 |
-
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-
|
227 |
-
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-
|
228 |
-
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-
|
229 |
-
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-
|
230 |
-
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-
|
231 |
-
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-
|
232 |
-
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-
|
233 |
-
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-
|
234 |
-
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-
|
235 |
-
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-
|
236 |
-
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-
|
237 |
-
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-
|
238 |
-
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-
|
239 |
-
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-
|
240 |
-
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-
|
241 |
-
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-
|
242 |
-
"model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-
|
243 |
-
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-
|
244 |
-
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-
|
245 |
-
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-
|
246 |
-
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-
|
247 |
-
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-
|
248 |
-
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-
|
249 |
-
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-
|
250 |
-
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-
|
251 |
-
"model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-
|
252 |
-
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-
|
253 |
-
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-
|
254 |
-
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-
|
255 |
-
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-
|
256 |
-
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-
|
257 |
-
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-
|
258 |
-
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-
|
259 |
-
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-
|
260 |
-
"model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-
|
261 |
-
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-
|
262 |
-
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-
|
263 |
-
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-
|
264 |
-
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-
|
265 |
-
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-
|
266 |
-
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-
|
267 |
-
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-
|
268 |
-
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-
|
269 |
-
"model.layers.35.input_layernorm.weight": "pytorch_model-
|
270 |
-
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-
|
271 |
-
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-
|
272 |
-
"model.layers.35.mlp.up_proj.weight": "pytorch_model-
|
273 |
-
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-
|
274 |
-
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-
|
275 |
-
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-
|
276 |
-
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-
|
277 |
-
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-
|
278 |
-
"model.layers.36.input_layernorm.weight": "pytorch_model-
|
279 |
-
"model.layers.36.mlp.down_proj.weight": "pytorch_model-
|
280 |
-
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-
|
281 |
-
"model.layers.36.mlp.up_proj.weight": "pytorch_model-
|
282 |
-
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-
|
283 |
-
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-
|
284 |
-
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-
|
285 |
-
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-
|
286 |
-
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-
|
287 |
-
"model.layers.37.input_layernorm.weight": "pytorch_model-
|
288 |
-
"model.layers.37.mlp.down_proj.weight": "pytorch_model-
|
289 |
-
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-
|
290 |
-
"model.layers.37.mlp.up_proj.weight": "pytorch_model-
|
291 |
-
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-
|
292 |
-
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-
|
293 |
-
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-
|
294 |
-
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-
|
295 |
-
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-
|
296 |
-
"model.layers.38.input_layernorm.weight": "pytorch_model-
|
297 |
-
"model.layers.38.mlp.down_proj.weight": "pytorch_model-
|
298 |
-
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-
|
299 |
-
"model.layers.38.mlp.up_proj.weight": "pytorch_model-
|
300 |
-
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-
|
301 |
-
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-
|
302 |
-
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-
|
303 |
-
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-
|
304 |
-
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-
|
305 |
-
"model.layers.39.input_layernorm.weight": "pytorch_model-
|
306 |
-
"model.layers.39.mlp.down_proj.weight": "pytorch_model-
|
307 |
-
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-
|
308 |
-
"model.layers.39.mlp.up_proj.weight": "pytorch_model-
|
309 |
-
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-
|
310 |
-
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-
|
311 |
-
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-
|
312 |
-
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-
|
313 |
-
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-
|
314 |
-
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-
|
315 |
-
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-
|
316 |
-
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
317 |
-
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-
|
318 |
-
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
319 |
-
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
320 |
-
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
321 |
-
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
322 |
-
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
323 |
-
"model.layers.40.input_layernorm.weight": "pytorch_model-
|
324 |
-
"model.layers.40.mlp.down_proj.weight": "pytorch_model-
|
325 |
-
"model.layers.40.mlp.gate_proj.weight": "pytorch_model-
|
326 |
-
"model.layers.40.mlp.up_proj.weight": "pytorch_model-
|
327 |
-
"model.layers.40.post_attention_layernorm.weight": "pytorch_model-
|
328 |
-
"model.layers.40.self_attn.k_proj.weight": "pytorch_model-
|
329 |
-
"model.layers.40.self_attn.o_proj.weight": "pytorch_model-
|
330 |
-
"model.layers.40.self_attn.q_proj.weight": "pytorch_model-
|
331 |
-
"model.layers.40.self_attn.v_proj.weight": "pytorch_model-
|
332 |
-
"model.layers.41.input_layernorm.weight": "pytorch_model-
|
333 |
-
"model.layers.41.mlp.down_proj.weight": "pytorch_model-
|
334 |
-
"model.layers.41.mlp.gate_proj.weight": "pytorch_model-
|
335 |
-
"model.layers.41.mlp.up_proj.weight": "pytorch_model-
|
336 |
-
"model.layers.41.post_attention_layernorm.weight": "pytorch_model-
|
337 |
-
"model.layers.41.self_attn.k_proj.weight": "pytorch_model-
|
338 |
-
"model.layers.41.self_attn.o_proj.weight": "pytorch_model-
|
339 |
-
"model.layers.41.self_attn.q_proj.weight": "pytorch_model-
|
340 |
-
"model.layers.41.self_attn.v_proj.weight": "pytorch_model-
|
341 |
-
"model.layers.42.input_layernorm.weight": "pytorch_model-
|
342 |
-
"model.layers.42.mlp.down_proj.weight": "pytorch_model-
|
343 |
-
"model.layers.42.mlp.gate_proj.weight": "pytorch_model-
|
344 |
-
"model.layers.42.mlp.up_proj.weight": "pytorch_model-
|
345 |
-
"model.layers.42.post_attention_layernorm.weight": "pytorch_model-
|
346 |
-
"model.layers.42.self_attn.k_proj.weight": "pytorch_model-
|
347 |
-
"model.layers.42.self_attn.o_proj.weight": "pytorch_model-
|
348 |
-
"model.layers.42.self_attn.q_proj.weight": "pytorch_model-
|
349 |
-
"model.layers.42.self_attn.v_proj.weight": "pytorch_model-
|
350 |
-
"model.layers.43.input_layernorm.weight": "pytorch_model-
|
351 |
-
"model.layers.43.mlp.down_proj.weight": "pytorch_model-
|
352 |
-
"model.layers.43.mlp.gate_proj.weight": "pytorch_model-
|
353 |
-
"model.layers.43.mlp.up_proj.weight": "pytorch_model-
|
354 |
-
"model.layers.43.post_attention_layernorm.weight": "pytorch_model-
|
355 |
-
"model.layers.43.self_attn.k_proj.weight": "pytorch_model-
|
356 |
-
"model.layers.43.self_attn.o_proj.weight": "pytorch_model-
|
357 |
-
"model.layers.43.self_attn.q_proj.weight": "pytorch_model-
|
358 |
-
"model.layers.43.self_attn.v_proj.weight": "pytorch_model-
|
359 |
-
"model.layers.44.input_layernorm.weight": "pytorch_model-
|
360 |
-
"model.layers.44.mlp.down_proj.weight": "pytorch_model-
|
361 |
-
"model.layers.44.mlp.gate_proj.weight": "pytorch_model-
|
362 |
-
"model.layers.44.mlp.up_proj.weight": "pytorch_model-
|
363 |
-
"model.layers.44.post_attention_layernorm.weight": "pytorch_model-
|
364 |
-
"model.layers.44.self_attn.k_proj.weight": "pytorch_model-
|
365 |
-
"model.layers.44.self_attn.o_proj.weight": "pytorch_model-
|
366 |
-
"model.layers.44.self_attn.q_proj.weight": "pytorch_model-
|
367 |
-
"model.layers.44.self_attn.v_proj.weight": "pytorch_model-
|
368 |
-
"model.layers.45.input_layernorm.weight": "pytorch_model-00004-of-
|
369 |
-
"model.layers.45.mlp.down_proj.weight": "pytorch_model-00004-of-
|
370 |
-
"model.layers.45.mlp.gate_proj.weight": "pytorch_model-00004-of-
|
371 |
-
"model.layers.45.mlp.up_proj.weight": "pytorch_model-00004-of-
|
372 |
-
"model.layers.45.post_attention_layernorm.weight": "pytorch_model-00004-of-
|
373 |
-
"model.layers.45.self_attn.k_proj.weight": "pytorch_model-
|
374 |
-
"model.layers.45.self_attn.o_proj.weight": "pytorch_model-
|
375 |
-
"model.layers.45.self_attn.q_proj.weight": "pytorch_model-
|
376 |
-
"model.layers.45.self_attn.v_proj.weight": "pytorch_model-
|
377 |
-
"model.layers.46.input_layernorm.weight": "pytorch_model-00004-of-
|
378 |
-
"model.layers.46.mlp.down_proj.weight": "pytorch_model-00004-of-
|
379 |
-
"model.layers.46.mlp.gate_proj.weight": "pytorch_model-00004-of-
|
380 |
-
"model.layers.46.mlp.up_proj.weight": "pytorch_model-00004-of-
|
381 |
-
"model.layers.46.post_attention_layernorm.weight": "pytorch_model-00004-of-
|
382 |
-
"model.layers.46.self_attn.k_proj.weight": "pytorch_model-00004-of-
|
383 |
-
"model.layers.46.self_attn.o_proj.weight": "pytorch_model-00004-of-
|
384 |
-
"model.layers.46.self_attn.q_proj.weight": "pytorch_model-00004-of-
|
385 |
-
"model.layers.46.self_attn.v_proj.weight": "pytorch_model-00004-of-
|
386 |
-
"model.layers.47.input_layernorm.weight": "pytorch_model-00004-of-
|
387 |
-
"model.layers.47.mlp.down_proj.weight": "pytorch_model-00004-of-
|
388 |
-
"model.layers.47.mlp.gate_proj.weight": "pytorch_model-00004-of-
|
389 |
-
"model.layers.47.mlp.up_proj.weight": "pytorch_model-00004-of-
|
390 |
-
"model.layers.47.post_attention_layernorm.weight": "pytorch_model-00004-of-
|
391 |
-
"model.layers.47.self_attn.k_proj.weight": "pytorch_model-00004-of-
|
392 |
-
"model.layers.47.self_attn.o_proj.weight": "pytorch_model-00004-of-
|
393 |
-
"model.layers.47.self_attn.q_proj.weight": "pytorch_model-00004-of-
|
394 |
-
"model.layers.47.self_attn.v_proj.weight": "pytorch_model-00004-of-
|
395 |
-
"model.layers.48.input_layernorm.weight": "pytorch_model-
|
396 |
-
"model.layers.48.mlp.down_proj.weight": "pytorch_model-
|
397 |
-
"model.layers.48.mlp.gate_proj.weight": "pytorch_model-
|
398 |
-
"model.layers.48.mlp.up_proj.weight": "pytorch_model-
|
399 |
-
"model.layers.48.post_attention_layernorm.weight": "pytorch_model-
|
400 |
-
"model.layers.48.self_attn.k_proj.weight": "pytorch_model-00004-of-
|
401 |
-
"model.layers.48.self_attn.o_proj.weight": "pytorch_model-00004-of-
|
402 |
-
"model.layers.48.self_attn.q_proj.weight": "pytorch_model-00004-of-
|
403 |
-
"model.layers.48.self_attn.v_proj.weight": "pytorch_model-00004-of-
|
404 |
-
"model.layers.49.input_layernorm.weight": "pytorch_model-
|
405 |
-
"model.layers.49.mlp.down_proj.weight": "pytorch_model-
|
406 |
-
"model.layers.49.mlp.gate_proj.weight": "pytorch_model-
|
407 |
-
"model.layers.49.mlp.up_proj.weight": "pytorch_model-
|
408 |
-
"model.layers.49.post_attention_layernorm.weight": "pytorch_model-
|
409 |
-
"model.layers.49.self_attn.k_proj.weight": "pytorch_model-
|
410 |
-
"model.layers.49.self_attn.o_proj.weight": "pytorch_model-
|
411 |
-
"model.layers.49.self_attn.q_proj.weight": "pytorch_model-
|
412 |
-
"model.layers.49.self_attn.v_proj.weight": "pytorch_model-
|
413 |
-
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-
|
414 |
-
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-
|
415 |
-
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
416 |
-
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-
|
417 |
-
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
418 |
-
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
419 |
-
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
420 |
-
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
421 |
-
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
422 |
-
"model.layers.50.input_layernorm.weight": "pytorch_model-
|
423 |
-
"model.layers.50.mlp.down_proj.weight": "pytorch_model-
|
424 |
-
"model.layers.50.mlp.gate_proj.weight": "pytorch_model-
|
425 |
-
"model.layers.50.mlp.up_proj.weight": "pytorch_model-
|
426 |
-
"model.layers.50.post_attention_layernorm.weight": "pytorch_model-
|
427 |
-
"model.layers.50.self_attn.k_proj.weight": "pytorch_model-
|
428 |
-
"model.layers.50.self_attn.o_proj.weight": "pytorch_model-
|
429 |
-
"model.layers.50.self_attn.q_proj.weight": "pytorch_model-
|
430 |
-
"model.layers.50.self_attn.v_proj.weight": "pytorch_model-
|
431 |
-
"model.layers.51.input_layernorm.weight": "pytorch_model-
|
432 |
-
"model.layers.51.mlp.down_proj.weight": "pytorch_model-
|
433 |
-
"model.layers.51.mlp.gate_proj.weight": "pytorch_model-
|
434 |
-
"model.layers.51.mlp.up_proj.weight": "pytorch_model-
|
435 |
-
"model.layers.51.post_attention_layernorm.weight": "pytorch_model-
|
436 |
-
"model.layers.51.self_attn.k_proj.weight": "pytorch_model-
|
437 |
-
"model.layers.51.self_attn.o_proj.weight": "pytorch_model-
|
438 |
-
"model.layers.51.self_attn.q_proj.weight": "pytorch_model-
|
439 |
-
"model.layers.51.self_attn.v_proj.weight": "pytorch_model-
|
440 |
-
"model.layers.52.input_layernorm.weight": "pytorch_model-
|
441 |
-
"model.layers.52.mlp.down_proj.weight": "pytorch_model-
|
442 |
-
"model.layers.52.mlp.gate_proj.weight": "pytorch_model-
|
443 |
-
"model.layers.52.mlp.up_proj.weight": "pytorch_model-
|
444 |
-
"model.layers.52.post_attention_layernorm.weight": "pytorch_model-
|
445 |
-
"model.layers.52.self_attn.k_proj.weight": "pytorch_model-
|
446 |
-
"model.layers.52.self_attn.o_proj.weight": "pytorch_model-
|
447 |
-
"model.layers.52.self_attn.q_proj.weight": "pytorch_model-
|
448 |
-
"model.layers.52.self_attn.v_proj.weight": "pytorch_model-
|
449 |
-
"model.layers.53.input_layernorm.weight": "pytorch_model-
|
450 |
-
"model.layers.53.mlp.down_proj.weight": "pytorch_model-
|
451 |
-
"model.layers.53.mlp.gate_proj.weight": "pytorch_model-
|
452 |
-
"model.layers.53.mlp.up_proj.weight": "pytorch_model-
|
453 |
-
"model.layers.53.post_attention_layernorm.weight": "pytorch_model-
|
454 |
-
"model.layers.53.self_attn.k_proj.weight": "pytorch_model-
|
455 |
-
"model.layers.53.self_attn.o_proj.weight": "pytorch_model-
|
456 |
-
"model.layers.53.self_attn.q_proj.weight": "pytorch_model-
|
457 |
-
"model.layers.53.self_attn.v_proj.weight": "pytorch_model-
|
458 |
-
"model.layers.54.input_layernorm.weight": "pytorch_model-
|
459 |
-
"model.layers.54.mlp.down_proj.weight": "pytorch_model-
|
460 |
-
"model.layers.54.mlp.gate_proj.weight": "pytorch_model-
|
461 |
-
"model.layers.54.mlp.up_proj.weight": "pytorch_model-
|
462 |
-
"model.layers.54.post_attention_layernorm.weight": "pytorch_model-
|
463 |
-
"model.layers.54.self_attn.k_proj.weight": "pytorch_model-
|
464 |
-
"model.layers.54.self_attn.o_proj.weight": "pytorch_model-
|
465 |
-
"model.layers.54.self_attn.q_proj.weight": "pytorch_model-
|
466 |
-
"model.layers.54.self_attn.v_proj.weight": "pytorch_model-
|
467 |
-
"model.layers.55.input_layernorm.weight": "pytorch_model-
|
468 |
-
"model.layers.55.mlp.down_proj.weight": "pytorch_model-
|
469 |
-
"model.layers.55.mlp.gate_proj.weight": "pytorch_model-
|
470 |
-
"model.layers.55.mlp.up_proj.weight": "pytorch_model-
|
471 |
-
"model.layers.55.post_attention_layernorm.weight": "pytorch_model-
|
472 |
-
"model.layers.55.self_attn.k_proj.weight": "pytorch_model-
|
473 |
-
"model.layers.55.self_attn.o_proj.weight": "pytorch_model-
|
474 |
-
"model.layers.55.self_attn.q_proj.weight": "pytorch_model-
|
475 |
-
"model.layers.55.self_attn.v_proj.weight": "pytorch_model-
|
476 |
-
"model.layers.56.input_layernorm.weight": "pytorch_model-
|
477 |
-
"model.layers.56.mlp.down_proj.weight": "pytorch_model-
|
478 |
-
"model.layers.56.mlp.gate_proj.weight": "pytorch_model-
|
479 |
-
"model.layers.56.mlp.up_proj.weight": "pytorch_model-
|
480 |
-
"model.layers.56.post_attention_layernorm.weight": "pytorch_model-
|
481 |
-
"model.layers.56.self_attn.k_proj.weight": "pytorch_model-
|
482 |
-
"model.layers.56.self_attn.o_proj.weight": "pytorch_model-
|
483 |
-
"model.layers.56.self_attn.q_proj.weight": "pytorch_model-
|
484 |
-
"model.layers.56.self_attn.v_proj.weight": "pytorch_model-
|
485 |
-
"model.layers.57.input_layernorm.weight": "pytorch_model-
|
486 |
-
"model.layers.57.mlp.down_proj.weight": "pytorch_model-
|
487 |
-
"model.layers.57.mlp.gate_proj.weight": "pytorch_model-
|
488 |
-
"model.layers.57.mlp.up_proj.weight": "pytorch_model-
|
489 |
-
"model.layers.57.post_attention_layernorm.weight": "pytorch_model-
|
490 |
-
"model.layers.57.self_attn.k_proj.weight": "pytorch_model-
|
491 |
-
"model.layers.57.self_attn.o_proj.weight": "pytorch_model-
|
492 |
-
"model.layers.57.self_attn.q_proj.weight": "pytorch_model-
|
493 |
-
"model.layers.57.self_attn.v_proj.weight": "pytorch_model-
|
494 |
-
"model.layers.58.input_layernorm.weight": "pytorch_model-
|
495 |
-
"model.layers.58.mlp.down_proj.weight": "pytorch_model-
|
496 |
-
"model.layers.58.mlp.gate_proj.weight": "pytorch_model-
|
497 |
-
"model.layers.58.mlp.up_proj.weight": "pytorch_model-
|
498 |
-
"model.layers.58.post_attention_layernorm.weight": "pytorch_model-
|
499 |
-
"model.layers.58.self_attn.k_proj.weight": "pytorch_model-
|
500 |
-
"model.layers.58.self_attn.o_proj.weight": "pytorch_model-
|
501 |
-
"model.layers.58.self_attn.q_proj.weight": "pytorch_model-
|
502 |
-
"model.layers.58.self_attn.v_proj.weight": "pytorch_model-
|
503 |
-
"model.layers.59.input_layernorm.weight": "pytorch_model-
|
504 |
-
"model.layers.59.mlp.down_proj.weight": "pytorch_model-
|
505 |
-
"model.layers.59.mlp.gate_proj.weight": "pytorch_model-
|
506 |
-
"model.layers.59.mlp.up_proj.weight": "pytorch_model-
|
507 |
-
"model.layers.59.post_attention_layernorm.weight": "pytorch_model-
|
508 |
-
"model.layers.59.self_attn.k_proj.weight": "pytorch_model-
|
509 |
-
"model.layers.59.self_attn.o_proj.weight": "pytorch_model-
|
510 |
-
"model.layers.59.self_attn.q_proj.weight": "pytorch_model-
|
511 |
-
"model.layers.59.self_attn.v_proj.weight": "pytorch_model-
|
512 |
-
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-
|
513 |
-
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-
|
514 |
-
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
515 |
-
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-
|
516 |
-
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
517 |
-
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
518 |
-
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
519 |
-
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
520 |
-
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
521 |
-
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-
|
522 |
-
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-
|
523 |
-
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
524 |
-
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-
|
525 |
-
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
526 |
-
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
527 |
-
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
528 |
-
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
529 |
-
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
530 |
-
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-
|
531 |
-
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-
|
532 |
-
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
533 |
-
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-
|
534 |
-
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
535 |
-
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
536 |
-
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
537 |
-
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
538 |
-
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
539 |
-
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-
|
540 |
-
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-
|
541 |
-
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
542 |
-
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-
|
543 |
-
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
544 |
-
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
545 |
-
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
546 |
-
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
547 |
-
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
548 |
-
"model.norm.weight": "pytorch_model-
|
549 |
}
|
550 |
}
|
|
|
3 |
"total_size": 40177428480
|
4 |
},
|
5 |
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00005-of-00005.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00005.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
|
17 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
|
26 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
|
35 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
|
44 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
|
53 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
|
62 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
|
71 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
|
80 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
|
89 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
|
98 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
|
107 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
|
116 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
|
125 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
|
134 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
|
143 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
|
152 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
|
161 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
|
170 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
|
179 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
|
188 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
|
197 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
|
206 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
|
215 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
|
224 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
|
233 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
|
242 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
|
251 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
|
260 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
|
269 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
|
278 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
|
287 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
|
296 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
|
305 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
|
314 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
|
323 |
+
"model.layers.40.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
324 |
+
"model.layers.40.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
|
325 |
+
"model.layers.40.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
|
326 |
+
"model.layers.40.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
|
327 |
+
"model.layers.40.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
328 |
+
"model.layers.40.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
|
329 |
+
"model.layers.40.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
|
330 |
+
"model.layers.40.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
|
331 |
+
"model.layers.40.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
|
332 |
+
"model.layers.41.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
333 |
+
"model.layers.41.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
|
334 |
+
"model.layers.41.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
|
335 |
+
"model.layers.41.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
|
336 |
+
"model.layers.41.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
337 |
+
"model.layers.41.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
|
338 |
+
"model.layers.41.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
|
339 |
+
"model.layers.41.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
|
340 |
+
"model.layers.41.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
|
341 |
+
"model.layers.42.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
342 |
+
"model.layers.42.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
|
343 |
+
"model.layers.42.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
|
344 |
+
"model.layers.42.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
|
345 |
+
"model.layers.42.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
346 |
+
"model.layers.42.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
|
347 |
+
"model.layers.42.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
|
348 |
+
"model.layers.42.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
|
349 |
+
"model.layers.42.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
|
350 |
+
"model.layers.43.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
351 |
+
"model.layers.43.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
|
352 |
+
"model.layers.43.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
|
353 |
+
"model.layers.43.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
|
354 |
+
"model.layers.43.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
355 |
+
"model.layers.43.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
|
356 |
+
"model.layers.43.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
|
357 |
+
"model.layers.43.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
|
358 |
+
"model.layers.43.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
|
359 |
+
"model.layers.44.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
360 |
+
"model.layers.44.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
|
361 |
+
"model.layers.44.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
|
362 |
+
"model.layers.44.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
|
363 |
+
"model.layers.44.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
|
364 |
+
"model.layers.44.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
|
365 |
+
"model.layers.44.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
|
366 |
+
"model.layers.44.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
|
367 |
+
"model.layers.44.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
|
368 |
+
"model.layers.45.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
369 |
+
"model.layers.45.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
|
370 |
+
"model.layers.45.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
|
371 |
+
"model.layers.45.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
|
372 |
+
"model.layers.45.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
373 |
+
"model.layers.45.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
|
374 |
+
"model.layers.45.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
|
375 |
+
"model.layers.45.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
|
376 |
+
"model.layers.45.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
|
377 |
+
"model.layers.46.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
378 |
+
"model.layers.46.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
|
379 |
+
"model.layers.46.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
|
380 |
+
"model.layers.46.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
|
381 |
+
"model.layers.46.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
382 |
+
"model.layers.46.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
|
383 |
+
"model.layers.46.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
|
384 |
+
"model.layers.46.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
|
385 |
+
"model.layers.46.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
|
386 |
+
"model.layers.47.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
387 |
+
"model.layers.47.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
|
388 |
+
"model.layers.47.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
|
389 |
+
"model.layers.47.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
|
390 |
+
"model.layers.47.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
391 |
+
"model.layers.47.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
|
392 |
+
"model.layers.47.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
|
393 |
+
"model.layers.47.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
|
394 |
+
"model.layers.47.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
|
395 |
+
"model.layers.48.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
396 |
+
"model.layers.48.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
|
397 |
+
"model.layers.48.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
|
398 |
+
"model.layers.48.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
|
399 |
+
"model.layers.48.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
400 |
+
"model.layers.48.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
|
401 |
+
"model.layers.48.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
|
402 |
+
"model.layers.48.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
|
403 |
+
"model.layers.48.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
|
404 |
+
"model.layers.49.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
405 |
+
"model.layers.49.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
|
406 |
+
"model.layers.49.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
|
407 |
+
"model.layers.49.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
|
408 |
+
"model.layers.49.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
409 |
+
"model.layers.49.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
|
410 |
+
"model.layers.49.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
|
411 |
+
"model.layers.49.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
|
412 |
+
"model.layers.49.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
|
413 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
414 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
|
415 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
|
416 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
|
417 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
418 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
|
419 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
|
420 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
|
421 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
|
422 |
+
"model.layers.50.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
423 |
+
"model.layers.50.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
|
424 |
+
"model.layers.50.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
|
425 |
+
"model.layers.50.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
|
426 |
+
"model.layers.50.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
427 |
+
"model.layers.50.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
|
428 |
+
"model.layers.50.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
|
429 |
+
"model.layers.50.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
|
430 |
+
"model.layers.50.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
|
431 |
+
"model.layers.51.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
432 |
+
"model.layers.51.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
|
433 |
+
"model.layers.51.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
|
434 |
+
"model.layers.51.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
|
435 |
+
"model.layers.51.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
436 |
+
"model.layers.51.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
|
437 |
+
"model.layers.51.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
|
438 |
+
"model.layers.51.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
|
439 |
+
"model.layers.51.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
|
440 |
+
"model.layers.52.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
441 |
+
"model.layers.52.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
|
442 |
+
"model.layers.52.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
|
443 |
+
"model.layers.52.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
|
444 |
+
"model.layers.52.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
445 |
+
"model.layers.52.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
|
446 |
+
"model.layers.52.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
|
447 |
+
"model.layers.52.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
|
448 |
+
"model.layers.52.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
|
449 |
+
"model.layers.53.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
450 |
+
"model.layers.53.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
|
451 |
+
"model.layers.53.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
|
452 |
+
"model.layers.53.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
|
453 |
+
"model.layers.53.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
454 |
+
"model.layers.53.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
|
455 |
+
"model.layers.53.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
|
456 |
+
"model.layers.53.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
|
457 |
+
"model.layers.53.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
|
458 |
+
"model.layers.54.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
459 |
+
"model.layers.54.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
|
460 |
+
"model.layers.54.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
|
461 |
+
"model.layers.54.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
|
462 |
+
"model.layers.54.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
463 |
+
"model.layers.54.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
|
464 |
+
"model.layers.54.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
|
465 |
+
"model.layers.54.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
|
466 |
+
"model.layers.54.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
|
467 |
+
"model.layers.55.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
468 |
+
"model.layers.55.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
|
469 |
+
"model.layers.55.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
|
470 |
+
"model.layers.55.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
|
471 |
+
"model.layers.55.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
472 |
+
"model.layers.55.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
|
473 |
+
"model.layers.55.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
|
474 |
+
"model.layers.55.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
|
475 |
+
"model.layers.55.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
|
476 |
+
"model.layers.56.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
477 |
+
"model.layers.56.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
|
478 |
+
"model.layers.56.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
|
479 |
+
"model.layers.56.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
|
480 |
+
"model.layers.56.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
481 |
+
"model.layers.56.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
|
482 |
+
"model.layers.56.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
|
483 |
+
"model.layers.56.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
|
484 |
+
"model.layers.56.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
|
485 |
+
"model.layers.57.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
486 |
+
"model.layers.57.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
|
487 |
+
"model.layers.57.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
|
488 |
+
"model.layers.57.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
|
489 |
+
"model.layers.57.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
490 |
+
"model.layers.57.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
|
491 |
+
"model.layers.57.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
|
492 |
+
"model.layers.57.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
|
493 |
+
"model.layers.57.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
|
494 |
+
"model.layers.58.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
495 |
+
"model.layers.58.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
|
496 |
+
"model.layers.58.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
|
497 |
+
"model.layers.58.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
|
498 |
+
"model.layers.58.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
499 |
+
"model.layers.58.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
|
500 |
+
"model.layers.58.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
|
501 |
+
"model.layers.58.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
|
502 |
+
"model.layers.58.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
|
503 |
+
"model.layers.59.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
504 |
+
"model.layers.59.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
|
505 |
+
"model.layers.59.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
|
506 |
+
"model.layers.59.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
|
507 |
+
"model.layers.59.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
|
508 |
+
"model.layers.59.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
|
509 |
+
"model.layers.59.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
|
510 |
+
"model.layers.59.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
|
511 |
+
"model.layers.59.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
|
512 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
513 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
|
514 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
|
515 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
|
516 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
517 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
|
518 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
|
519 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
|
520 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
|
521 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
522 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
|
523 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
|
524 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
|
525 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
526 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
|
527 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
|
528 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
|
529 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
|
530 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
531 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
|
532 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
|
533 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
|
534 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
535 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
|
536 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
|
537 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
|
538 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
|
539 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
540 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
|
541 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
|
542 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
|
543 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
|
544 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
|
545 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
|
546 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
|
547 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
|
548 |
+
"model.norm.weight": "pytorch_model-00004-of-00005.bin"
|
549 |
}
|
550 |
}
|
tokenization_internlm.py
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright
|
3 |
#
|
4 |
-
# This code is based on
|
|
|
|
|
|
|
5 |
#
|
6 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
# you may not use this file except in compliance with the License.
|
@@ -15,7 +18,7 @@
|
|
15 |
# See the License for the specific language governing permissions and
|
16 |
# limitations under the License.
|
17 |
|
18 |
-
"""Tokenization classes for
|
19 |
import os
|
20 |
from shutil import copyfile
|
21 |
from typing import Any, Dict, List, Optional, Tuple
|
@@ -32,7 +35,7 @@ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
|
32 |
|
33 |
PRETRAINED_VOCAB_FILES_MAP = {}
|
34 |
|
35 |
-
|
36 |
class InternLMTokenizer(PreTrainedTokenizer):
|
37 |
"""
|
38 |
Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
|
@@ -78,6 +81,8 @@ class InternLMTokenizer(PreTrainedTokenizer):
|
|
78 |
**kwargs,
|
79 |
)
|
80 |
|
|
|
|
|
81 |
@property
|
82 |
def no_prefix_space_tokens(self):
|
83 |
if self._no_prefix_space_tokens is None:
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
#
|
9 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
# you may not use this file except in compliance with the License.
|
|
|
18 |
# See the License for the specific language governing permissions and
|
19 |
# limitations under the License.
|
20 |
|
21 |
+
"""Tokenization classes for IntermLM."""
|
22 |
import os
|
23 |
from shutil import copyfile
|
24 |
from typing import Any, Dict, List, Optional, Tuple
|
|
|
35 |
|
36 |
PRETRAINED_VOCAB_FILES_MAP = {}
|
37 |
|
38 |
+
|
39 |
class InternLMTokenizer(PreTrainedTokenizer):
|
40 |
"""
|
41 |
Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
|
|
|
81 |
**kwargs,
|
82 |
)
|
83 |
|
84 |
+
""" Initialization"""
|
85 |
+
|
86 |
@property
|
87 |
def no_prefix_space_tokens(self):
|
88 |
if self._no_prefix_space_tokens is None:
|