results / README.md
irenepap's picture
bert-base-pubmed-multilabel
2d28de0 verified
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2919
  • Precision: 0.8957
  • Recall: 0.8226
  • F1: 0.8576

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
0.3611 0.2 500 0.3194 0.8640 0.8324 0.8479
0.3106 0.4 1000 0.3039 0.8905 0.8013 0.8435
0.3027 0.6 1500 0.2954 0.9022 0.7927 0.8439
0.2952 0.81 2000 0.2864 0.8966 0.8185 0.8558
0.2905 1.01 2500 0.2875 0.8973 0.8150 0.8542
0.2605 1.21 3000 0.2841 0.8924 0.8369 0.8637
0.2591 1.41 3500 0.2820 0.8926 0.8444 0.8678
0.2574 1.61 4000 0.2826 0.8916 0.8359 0.8629
0.2602 1.81 4500 0.2764 0.8989 0.8291 0.8626
0.2561 2.01 5000 0.2813 0.8891 0.8454 0.8667
0.2195 2.22 5500 0.2869 0.9072 0.8110 0.8564
0.2209 2.42 6000 0.2845 0.9002 0.8216 0.8591
0.2178 2.62 6500 0.2827 0.8991 0.8285 0.8624
0.22 2.82 7000 0.2919 0.8957 0.8226 0.8576

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2