Edit model card

t5-small-asqa-ob

This model is a fine-tuned version of google/t5-small-ssm-nq on the ASQA dataset without context (closed book). It achieves the following results on the evaluation set:

  • Loss: 2.8099
  • Rouge1: 0.1493
  • Rouge2: 0.0837
  • Rougel: 0.1272
  • Rougelsum: 0.1270

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
3.8208 1.0 710 2.7856 0.1267 0.0644 0.1086 0.1084
3.0532 2.0 1420 2.6247 0.1321 0.0721 0.1145 0.1144
2.5656 3.0 2130 2.5062 0.1399 0.0773 0.1213 0.1213
2.3806 4.0 2840 2.5004 0.1431 0.0805 0.1243 0.1241
2.157 5.0 3550 2.5008 0.1455 0.0808 0.1255 0.1254
2.0458 6.0 4260 2.5313 0.1510 0.0846 0.1303 0.1301
1.914 7.0 4970 2.5298 0.1585 0.0885 0.1361 0.1358
1.7479 8.0 5680 2.5832 0.1508 0.0844 0.1292 0.1291
1.6875 9.0 6390 2.5928 0.1493 0.0834 0.1281 0.1279
1.574 10.0 7100 2.6364 0.1591 0.0885 0.1364 0.1363
1.4554 11.0 7810 2.6978 0.1513 0.0849 0.1295 0.1295
1.3909 12.0 8520 2.8099 0.1493 0.0837 0.1272 0.1270

Framework versions

  • Transformers 4.23.0.dev0
  • Pytorch 1.12.1+cu102
  • Datasets 2.5.1
  • Tokenizers 0.12.1
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for irenepap/t5-small-asqa-ob

Finetuned
(1)
this model

Dataset used to train irenepap/t5-small-asqa-ob