irenepap commited on
Commit
fd7dc6c
1 Parent(s): 801d21a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: t5-small-asqa-ob
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # t5-small-asqa-ob
16
+
17
+ This model is a fine-tuned version of [google/t5-small-ssm-nq](https://huggingface.co/google/t5-small-ssm-nq) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.9381
20
+ - Rouge1: 0.1633
21
+ - Rouge2: 0.0907
22
+ - Rougel: 0.1394
23
+ - Rougelsum: 0.1393
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 0.0005
43
+ - train_batch_size: 4
44
+ - eval_batch_size: 4
45
+ - seed: 42
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 50
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
53
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|
54
+ | 3.8212 | 1.0 | 710 | 2.7920 | 0.1248 | 0.0624 | 0.1064 | 0.1063 |
55
+ | 3.0559 | 2.0 | 1420 | 2.5937 | 0.1319 | 0.0715 | 0.1139 | 0.1138 |
56
+ | 2.568 | 3.0 | 2130 | 2.4971 | 0.1398 | 0.0754 | 0.1206 | 0.1204 |
57
+ | 2.384 | 4.0 | 2840 | 2.5024 | 0.1473 | 0.0817 | 0.1273 | 0.1271 |
58
+ | 2.1599 | 5.0 | 3550 | 2.4947 | 0.1498 | 0.0824 | 0.1288 | 0.1287 |
59
+ | 2.0444 | 6.0 | 4260 | 2.5305 | 0.1502 | 0.0837 | 0.1291 | 0.1290 |
60
+ | 1.9219 | 7.0 | 4970 | 2.5486 | 0.1599 | 0.0890 | 0.1376 | 0.1373 |
61
+ | 1.7532 | 8.0 | 5680 | 2.5772 | 0.1647 | 0.0914 | 0.1413 | 0.1411 |
62
+ | 1.6895 | 9.0 | 6390 | 2.6346 | 0.1630 | 0.0911 | 0.1397 | 0.1395 |
63
+ | 1.5751 | 10.0 | 7100 | 2.6650 | 0.1700 | 0.0944 | 0.1450 | 0.1449 |
64
+ | 1.4616 | 11.0 | 7810 | 2.6705 | 0.1571 | 0.0874 | 0.1348 | 0.1346 |
65
+ | 1.3923 | 12.0 | 8520 | 2.7767 | 0.1695 | 0.0951 | 0.1453 | 0.1450 |
66
+ | 1.3043 | 13.0 | 9230 | 2.8091 | 0.1704 | 0.0943 | 0.1460 | 0.1457 |
67
+ | 1.2868 | 14.0 | 9940 | 2.8390 | 0.1553 | 0.0854 | 0.1327 | 0.1324 |
68
+ | 1.176 | 15.0 | 10650 | 2.9381 | 0.1633 | 0.0907 | 0.1394 | 0.1393 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.23.0.dev0
74
+ - Pytorch 1.12.1+cu102
75
+ - Datasets 2.5.1
76
+ - Tokenizers 0.12.1