update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- rouge
|
7 |
+
model-index:
|
8 |
+
- name: t5-small-asqa-ob
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# t5-small-asqa-ob
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [google/t5-small-ssm-nq](https://huggingface.co/google/t5-small-ssm-nq) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.9381
|
20 |
+
- Rouge1: 0.1633
|
21 |
+
- Rouge2: 0.0907
|
22 |
+
- Rougel: 0.1394
|
23 |
+
- Rougelsum: 0.1393
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 0.0005
|
43 |
+
- train_batch_size: 4
|
44 |
+
- eval_batch_size: 4
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 50
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
53 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|
|
54 |
+
| 3.8212 | 1.0 | 710 | 2.7920 | 0.1248 | 0.0624 | 0.1064 | 0.1063 |
|
55 |
+
| 3.0559 | 2.0 | 1420 | 2.5937 | 0.1319 | 0.0715 | 0.1139 | 0.1138 |
|
56 |
+
| 2.568 | 3.0 | 2130 | 2.4971 | 0.1398 | 0.0754 | 0.1206 | 0.1204 |
|
57 |
+
| 2.384 | 4.0 | 2840 | 2.5024 | 0.1473 | 0.0817 | 0.1273 | 0.1271 |
|
58 |
+
| 2.1599 | 5.0 | 3550 | 2.4947 | 0.1498 | 0.0824 | 0.1288 | 0.1287 |
|
59 |
+
| 2.0444 | 6.0 | 4260 | 2.5305 | 0.1502 | 0.0837 | 0.1291 | 0.1290 |
|
60 |
+
| 1.9219 | 7.0 | 4970 | 2.5486 | 0.1599 | 0.0890 | 0.1376 | 0.1373 |
|
61 |
+
| 1.7532 | 8.0 | 5680 | 2.5772 | 0.1647 | 0.0914 | 0.1413 | 0.1411 |
|
62 |
+
| 1.6895 | 9.0 | 6390 | 2.6346 | 0.1630 | 0.0911 | 0.1397 | 0.1395 |
|
63 |
+
| 1.5751 | 10.0 | 7100 | 2.6650 | 0.1700 | 0.0944 | 0.1450 | 0.1449 |
|
64 |
+
| 1.4616 | 11.0 | 7810 | 2.6705 | 0.1571 | 0.0874 | 0.1348 | 0.1346 |
|
65 |
+
| 1.3923 | 12.0 | 8520 | 2.7767 | 0.1695 | 0.0951 | 0.1453 | 0.1450 |
|
66 |
+
| 1.3043 | 13.0 | 9230 | 2.8091 | 0.1704 | 0.0943 | 0.1460 | 0.1457 |
|
67 |
+
| 1.2868 | 14.0 | 9940 | 2.8390 | 0.1553 | 0.0854 | 0.1327 | 0.1324 |
|
68 |
+
| 1.176 | 15.0 | 10650 | 2.9381 | 0.1633 | 0.0907 | 0.1394 | 0.1393 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.23.0.dev0
|
74 |
+
- Pytorch 1.12.1+cu102
|
75 |
+
- Datasets 2.5.1
|
76 |
+
- Tokenizers 0.12.1
|