metadata
license: apache-2.0
base_model: google/electra-base-discriminator
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra_multiple_choice
results: []
electra_multiple_choice
This model is a fine-tuned version of google/electra-base-discriminator on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1882
- Accuracy: 0.97
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.4562 | 1.0 | 1725 | 1.2637 | 0.46 |
1.2814 | 2.0 | 3450 | 1.0774 | 0.55 |
1.1775 | 3.0 | 5175 | 0.9072 | 0.675 |
1.069 | 4.0 | 6900 | 0.7319 | 0.72 |
0.9674 | 5.0 | 8625 | 0.6151 | 0.78 |
0.8679 | 6.0 | 10350 | 0.5140 | 0.825 |
0.7673 | 7.0 | 12075 | 0.4306 | 0.84 |
0.6849 | 8.0 | 13800 | 0.3721 | 0.87 |
0.6147 | 9.0 | 15525 | 0.3286 | 0.885 |
0.5522 | 10.0 | 17250 | 0.2913 | 0.895 |
0.4936 | 11.0 | 18975 | 0.2785 | 0.915 |
0.4532 | 12.0 | 20700 | 0.2467 | 0.91 |
0.4107 | 13.0 | 22425 | 0.2226 | 0.93 |
0.3825 | 14.0 | 24150 | 0.2073 | 0.945 |
0.3492 | 15.0 | 25875 | 0.2027 | 0.93 |
0.3189 | 16.0 | 27600 | 0.2269 | 0.925 |
0.2977 | 17.0 | 29325 | 0.2412 | 0.93 |
0.2817 | 18.0 | 31050 | 0.1913 | 0.935 |
0.266 | 19.0 | 32775 | 0.1517 | 0.94 |
0.2437 | 20.0 | 34500 | 0.2012 | 0.935 |
0.234 | 21.0 | 36225 | 0.1600 | 0.935 |
0.2195 | 22.0 | 37950 | 0.1688 | 0.955 |
0.2002 | 23.0 | 39675 | 0.1347 | 0.955 |
0.1987 | 24.0 | 41400 | 0.1976 | 0.95 |
0.1858 | 25.0 | 43125 | 0.1568 | 0.955 |
0.1784 | 26.0 | 44850 | 0.1453 | 0.955 |
0.169 | 27.0 | 46575 | 0.1547 | 0.955 |
0.1597 | 28.0 | 48300 | 0.1882 | 0.97 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3