logs
This model is a fine-tuned version of google/gemma-2b-it on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.6511
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.1035 | 0.08 | 112 | 3.1213 |
3.0698 | 0.17 | 224 | 3.0171 |
3.0451 | 0.25 | 336 | 2.9717 |
2.8939 | 0.33 | 448 | 2.9336 |
2.8892 | 0.42 | 560 | 2.9099 |
2.8566 | 0.5 | 672 | 2.8757 |
2.8654 | 0.58 | 784 | 2.8486 |
2.8261 | 0.67 | 896 | 2.8291 |
2.8868 | 0.75 | 1008 | 2.7998 |
2.819 | 0.84 | 1120 | 2.7781 |
2.8064 | 0.92 | 1232 | 2.7543 |
2.761 | 1.0 | 1344 | 2.7338 |
2.3883 | 1.09 | 1456 | 2.7416 |
2.3511 | 1.17 | 1568 | 2.7239 |
2.3174 | 1.25 | 1680 | 2.7140 |
2.3234 | 1.34 | 1792 | 2.7004 |
2.3364 | 1.42 | 1904 | 2.6826 |
2.3079 | 1.5 | 2016 | 2.6718 |
2.2965 | 1.59 | 2128 | 2.6649 |
2.2233 | 1.67 | 2240 | 2.6626 |
2.2199 | 1.75 | 2352 | 2.6590 |
2.3126 | 1.84 | 2464 | 2.6526 |
2.2602 | 1.92 | 2576 | 2.6513 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.0.0+cu117
- Datasets 2.16.0
- Tokenizers 0.15.0
Model tree for isimorfizam/logs
Base model
google/gemma-2b-it