israel-avihail's picture
Push LunarLander-v2 model
b3bbaa3
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd1c0072940>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd1c00729d0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd1c0072a60>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd1c0072af0>",
"_build": "<function ActorCriticPolicy._build at 0x7fd1c0072b80>",
"forward": "<function ActorCriticPolicy.forward at 0x7fd1c0072c10>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd1c0072ca0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd1c0072d30>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fd1c0072dc0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd1c0072e50>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd1c0072ee0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd1c0072f70>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7fd1c006e6f0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1677762831830691842,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADqIST4xwn0+oRoxvmEUgb6c/6q8Nk8IvQAAAAAAAAAAANKaPF/rtD5ABU++5iCEvnYeeTz/DSm9AAAAAAAAAADNS249w4FZuv5jFbpRVAq5z1U+Ohe7NzkAAIA/AACAP808MjuuxYG6XYnytl5X6DBYB9O6XUkMNgAAgD8AAIA/+vYSvtxq3D4OeUM+So5qvgD+kjzcj5a9AAAAAAAAAAAzi+u7KeRrup6eQbpAKDK5kc3uul6mdTkAAIA/AACAP2ZURT04kq+7UkH6uqpVkjwL4RK91gB4PQAAgD8AAIA/AKDCO/ZMHboFemy6hLAgtoCFCTnLFYc5AACAPwAAgD/N+qg9FLzMuv0TBrxyOUO8T8XKu54aK70AAIA/AACAP4BaYj3D0Q+6TvOuuuB1iLXcoz+4ihTIOQAAgD8AAIA/gG7bPY/2AbqR9bK6BoYluc538zmqVNs5AACAPwAAgD/zpQG+iHwjP93r2D2HS2m+zzelu639JT4AAAAAAAAAADMzIrt0uls+KWmIvVSbIr6VP329prlwvQAAAAAAAAAAGsW5vR0IlD9K08m+TaPsviiZ/7w+Lyi+AAAAAAAAAAAAhYQ9t5+hP1L2Oj5TNaK+t+X1PYK8n7wAAAAAAAAAAOZeNL0zYLw/9/GgvrcZRT0wvzM6K6fGvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInxwFiIILb0CUhpRSlIwBbJRNMQGMAXSUR0CS+hlMRHwxdX2UKGgGaAloD0MITpgwmtVZcUCUhpRSlGgVTWEBaBZHQJL7EHIIWxh1fZQoaAZoCWgPQwg+CWzOgWtwQJSGlFKUaBVNRQFoFkdAkvuAmVqveXV9lChoBmgJaA9DCIguqG+Ze2xAlIaUUpRoFU00AWgWR0CS+4xDLKV6dX2UKGgGaAloD0MIi6pf6Xy5bUCUhpRSlGgVTUEBaBZHQJL7vQSi/PB1fZQoaAZoCWgPQwh9sIwN3WxuQJSGlFKUaBVNawFoFkdAkv5prgwXZXV9lChoBmgJaA9DCHhflQuV+XBAlIaUUpRoFU0ZAWgWR0CS/rwM6RyPdX2UKGgGaAloD0MIVu9wO3S2cECUhpRSlGgVTR8BaBZHQJL/JGI9C/p1fZQoaAZoCWgPQwia7nVSXx9vQJSGlFKUaBVNRQFoFkdAkv+DTa0x/XV9lChoBmgJaA9DCBZQqKfP+HFAlIaUUpRoFU0dAWgWR0CS/5xNIsiCdX2UKGgGaAloD0MIeAjjp/GaaECUhpRSlGgVTZUCaBZHQJMAW5lOGj91fZQoaAZoCWgPQwjOOXgmNNFrQJSGlFKUaBVNWAFoFkdAkwBxIatLc3V9lChoBmgJaA9DCCFcAYX6nG9AlIaUUpRoFU0ZAWgWR0CTAJwFC9h7dX2UKGgGaAloD0MIKqio+lVgcECUhpRSlGgVTZQBaBZHQJMC+MBIWgx1fZQoaAZoCWgPQwj9EYYBS6JJQJSGlFKUaBVL5mgWR0CTA7aCL/CJdX2UKGgGaAloD0MIIQIOoYpwckCUhpRSlGgVTUkBaBZHQJMD0cdYGMZ1fZQoaAZoCWgPQwjECrd8JEduQJSGlFKUaBVNOwFoFkdAkwZg5/9YOnV9lChoBmgJaA9DCGZpp+ayGXJAlIaUUpRoFU0WAWgWR0CTBtYa5wwTdX2UKGgGaAloD0MIRzgteNHYcECUhpRSlGgVTREBaBZHQJMHG8f3evZ1fZQoaAZoCWgPQwjDu1zE9w5wQJSGlFKUaBVNZAFoFkdAkyG/a11GLHV9lChoBmgJaA9DCKYr2EZ8G3FAlIaUUpRoFU0UAWgWR0CTIiw0fozOdX2UKGgGaAloD0MI5bZ9jzo9cECUhpRSlGgVTScBaBZHQJMi5YwIt191fZQoaAZoCWgPQwhyNh0BXOFuQJSGlFKUaBVNeQFoFkdAkyLnHWBjF3V9lChoBmgJaA9DCF6EKcqlCHFAlIaUUpRoFU08AWgWR0CTIudJJ5E/dX2UKGgGaAloD0MIknnkD4bzcECUhpRSlGgVTTkBaBZHQJMjBrGipNt1fZQoaAZoCWgPQwiB0Hr4MjRsQJSGlFKUaBVNJgFoFkdAkyZNrwe/6HV9lChoBmgJaA9DCAAbECHum3JAlIaUUpRoFU1vAWgWR0CTJo3QD3dsdX2UKGgGaAloD0MIq1s9Jz05cECUhpRSlGgVTWoBaBZHQJMmj0pVjqh1fZQoaAZoCWgPQwiSBre1hS5uQJSGlFKUaBVNcwFoFkdAkyamAskIHHV9lChoBmgJaA9DCLafjPHhC3NAlIaUUpRoFU0IAWgWR0CTKK69kBjndX2UKGgGaAloD0MIzvxqDtASckCUhpRSlGgVTRoBaBZHQJMoxchTwUh1fZQoaAZoCWgPQwh1PdF1YcptQJSGlFKUaBVN2AFoFkdAkykzi0fHP3V9lChoBmgJaA9DCIT1fw7zdXBAlIaUUpRoFU0nAWgWR0CTKYUNKAavdX2UKGgGaAloD0MIKxiV1Ikeb0CUhpRSlGgVTZ8BaBZHQJMrOa8YhuB1fZQoaAZoCWgPQwjvkGKABE9wQJSGlFKUaBVNpQFoFkdAkyuErwvxpnV9lChoBmgJaA9DCF8KD5odaHFAlIaUUpRoFU08AWgWR0CTLot3fQ8fdX2UKGgGaAloD0MINIRjlr2QckCUhpRSlGgVTVUBaBZHQJMu3XXiBGx1fZQoaAZoCWgPQwgE5bZ9j/VuQJSGlFKUaBVNfwFoFkdAkzAjn7pFC3V9lChoBmgJaA9DCIe/JmsU4XFAlIaUUpRoFU1nAWgWR0CTMETI/7iydX2UKGgGaAloD0MImiZsPxlOcUCUhpRSlGgVTXQBaBZHQJMw3863iJh1fZQoaAZoCWgPQwholC79y1xtQJSGlFKUaBVNIgFoFkdAkzEuWBz3iHV9lChoBmgJaA9DCB8UlKIVt2tAlIaUUpRoFU0xAWgWR0CTMX5rxiG4dX2UKGgGaAloD0MI83NDU/bLcECUhpRSlGgVTaEBaBZHQJMyTHggow51fZQoaAZoCWgPQwj9wcBzb/RyQJSGlFKUaBVNUwFoFkdAkzLR/ZuhsnV9lChoBmgJaA9DCMPUljrIMXFAlIaUUpRoFU1pAWgWR0CTM5bAk9lmdX2UKGgGaAloD0MIiIOEKF8Ob0CUhpRSlGgVTTwBaBZHQJM0gzEaVD91fZQoaAZoCWgPQwhz2eicHwNxQJSGlFKUaBVNaQFoFkdAkzWEmx+rl3V9lChoBmgJaA9DCN/A5EbRo3FAlIaUUpRoFU1eAWgWR0CTNfdhy8zzdX2UKGgGaAloD0MILq2GxL1jcUCUhpRSlGgVTS8BaBZHQJM2RtxdY4h1fZQoaAZoCWgPQwhgsBu27Y9xQJSGlFKUaBVNkwFoFkdAkzbiT+vQnnV9lChoBmgJaA9DCOW36GSpJW5AlIaUUpRoFU1dAWgWR0CTN10/W1+idX2UKGgGaAloD0MINe7Nbxh9cUCUhpRSlGgVTS8BaBZHQJM4ll7MPjJ1fZQoaAZoCWgPQwi7uI0GcA5yQJSGlFKUaBVNUwFoFkdAkzoWG/N7jXV9lChoBmgJaA9DCAw9YvScdnJAlIaUUpRoFU1QAWgWR0CTO2aFmFrVdX2UKGgGaAloD0MI3XwjumficUCUhpRSlGgVTVQBaBZHQJM9IKD01651fZQoaAZoCWgPQwgC1NSytaxtQJSGlFKUaBVNTQFoFkdAkz0+AVfu1HV9lChoBmgJaA9DCEVI3c6+wm5AlIaUUpRoFU05AWgWR0CTPlBt1p0wdX2UKGgGaAloD0MItHVwsLe1cECUhpRSlGgVTXQBaBZHQJM+YLUkOZt1fZQoaAZoCWgPQwjJWkOpfeZwQJSGlFKUaBVNUAFoFkdAkz6sZtNzsHV9lChoBmgJaA9DCHV4COMn1G1AlIaUUpRoFU1FAWgWR0CTQcPNFBppdX2UKGgGaAloD0MIiVxwBn8sa0CUhpRSlGgVTXIBaBZHQJNCrQZ4wAV1fZQoaAZoCWgPQwh4exACMn1xQJSGlFKUaBVNNQFoFkdAk0PawpvxY3V9lChoBmgJaA9DCLQh/8yg629AlIaUUpRoFU1WAWgWR0CTRFCMglnidX2UKGgGaAloD0MIW+m12VjHcECUhpRSlGgVTY4BaBZHQJNfrRMN+b51fZQoaAZoCWgPQwiqm4u/rQVyQJSGlFKUaBVN1wFoFkdAk2Sy+pOvdXV9lChoBmgJaA9DCAZHyaszNHBAlIaUUpRoFU1CAWgWR0CTZLMUh3aBdX2UKGgGaAloD0MIjpWYZ+X7cECUhpRSlGgVTTABaBZHQJNk0KQaJhx1fZQoaAZoCWgPQwg3GsBbIDFwQJSGlFKUaBVNOQFoFkdAk2VUdeY2KnV9lChoBmgJaA9DCACPqFBd/m5AlIaUUpRoFU3aAmgWR0CTZp/5+H8CdX2UKGgGaAloD0MIlMFR8uqzckCUhpRSlGgVTQIBaBZHQJNnrhUBGQV1fZQoaAZoCWgPQwjZlCu8y3JwQJSGlFKUaBVNsAFoFkdAk2ilLFn7HnV9lChoBmgJaA9DCDpBmxx+D3BAlIaUUpRoFU3VAWgWR0CTaOFOO802dX2UKGgGaAloD0MIs1w2OmcSbkCUhpRSlGgVTQECaBZHQJNo4oTfzjF1fZQoaAZoCWgPQwj44ov2uJFxQJSGlFKUaBVN0QFoFkdAk2xHgccU/XV9lChoBmgJaA9DCNjYJao3iW5AlIaUUpRoFU3MAWgWR0CTby6Rhc7hdX2UKGgGaAloD0MI6pYd4h87b0CUhpRSlGgVTS8BaBZHQJNyTKdQO4J1fZQoaAZoCWgPQwjhtUsbToZxQJSGlFKUaBVNIAJoFkdAk3JpTuOS4nV9lChoBmgJaA9DCOW4UzqYk3BAlIaUUpRoFU07AWgWR0CTcsX9R77bdX2UKGgGaAloD0MIgLdAguLbb0CUhpRSlGgVTQECaBZHQJNzGNvOyFB1fZQoaAZoCWgPQwjkafmBKw5wQJSGlFKUaBVNXgFoFkdAk3TNIPK+z3V9lChoBmgJaA9DCC81Qj9T43BAlIaUUpRoFU0fAWgWR0CTdPZha1TjdX2UKGgGaAloD0MIAcEcPf7ObUCUhpRSlGgVTTUBaBZHQJN1Ci48U211fZQoaAZoCWgPQwgyO4veqSZtQJSGlFKUaBVNxQJoFkdAk3WuH31zyXV9lChoBmgJaA9DCLsPQGqTNG9AlIaUUpRoFU1FAWgWR0CTdorMC9ytdX2UKGgGaAloD0MIaY6s/LKycUCUhpRSlGgVTQICaBZHQJN3A5Qxesx1fZQoaAZoCWgPQwhW1cvvtMByQJSGlFKUaBVNoQFoFkdAk3f80cfeUXV9lChoBmgJaA9DCHS2gNB6xF9AlIaUUpRoFU3oA2gWR0CTeQuSfUWmdX2UKGgGaAloD0MIdzBinwBkcUCUhpRSlGgVTUYBaBZHQJN5skfLcKx1fZQoaAZoCWgPQwhFLc2tEMpuQJSGlFKUaBVN/AFoFkdAk3o51A7gbnV9lChoBmgJaA9DCKaAtP8BlXBAlIaUUpRoFU02AWgWR0CTfBU+LWI5dX2UKGgGaAloD0MIzok9tE/CcECUhpRSlGgVTfoBaBZHQJN+Gu7pV0d1fZQoaAZoCWgPQwhxVG6i1r9xQJSGlFKUaBVNMAFoFkdAk4Aa9GqgiHV9lChoBmgJaA9DCLhYUYPpv3BAlIaUUpRoFU02AWgWR0CThLC7btZ3dX2UKGgGaAloD0MIyuGTTuSccECUhpRSlGgVTW8BaBZHQJOHQMBp5/t1fZQoaAZoCWgPQwhM4UGz6wpuQJSGlFKUaBVNnwFoFkdAk4dVKwpvxnV9lChoBmgJaA9DCPDd5o3TI3BAlIaUUpRoFU17AWgWR0CTiFD9wWFfdX2UKGgGaAloD0MI5ueGpuzcb0CUhpRSlGgVTd0BaBZHQJOK1EqlP8B1fZQoaAZoCWgPQwjmkNRCyWpuQJSGlFKUaBVNgAFoFkdAk4/KOYIBzXV9lChoBmgJaA9DCAJhp1g1unFAlIaUUpRoFU2gAWgWR0CTkA3qRlpXdX2UKGgGaAloD0MIHAqfrcN6cUCUhpRSlGgVTQACaBZHQJOQeP3i7051ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}