Edit model card

asr_model

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2363
  • Wer: 0.5153

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4621 2.0 1000 0.4702 0.9741
0.4612 4.0 2000 0.4621 0.9741
0.4458 6.0 3000 0.4464 0.9714
0.384 8.0 4000 0.3853 0.8235
0.3065 10.0 5000 0.3166 0.7829
0.2861 12.0 6000 0.2809 0.6802
0.248 14.0 7000 0.2677 0.6051
0.2449 16.0 8000 0.2541 0.5778
0.2298 18.0 9000 0.2480 0.5710
0.2281 20.0 10000 0.2418 0.5505
0.216 22.0 11000 0.2420 0.5340
0.2083 24.0 12000 0.2380 0.5253
0.1957 26.0 13000 0.2380 0.5209
0.1985 28.0 14000 0.2360 0.5181
0.2078 30.0 15000 0.2363 0.5153

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
6
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jadasdn/asr_model

Finetuned
(649)
this model