File size: 13,284 Bytes
2b42a47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
# pyre-unsafe
import copy
import torch
import torch.nn.functional as F
from transformers import AutoImageProcessor, Dinov2Config, Dinov2Model, SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel
from abc import ABC, abstractmethod
import torch.nn as nn
class ProcessorWrapper:
def __init__(
self,
transform,
height=378,
width=378,
image_mean=[0.48145466, 0.4578275, 0.40821073],
):
self._crop_size = {
"height": height,
"width": width,
}
self._transforms = transform
# print(transform)
self.image_mean = image_mean
@property
def crop_size(self):
return self._crop_size
def preprocess(self, image, return_tensors="pt"):
# Ensure image is a PIL Image
output = {}
output["pixel_values"] = [self._transforms(image)]
return output
class BaseVisionTower(nn.Module):
def __init__(self, vision_tower_name, args, delay_load=False):
super().__init__()
self.is_loaded = False
self.args = args
self.vision_tower_name = vision_tower_name
self.select_layer = args.mm_vision_select_layer
self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
self.unfreeze_mm_vision_tower = getattr(args, "unfreeze_mm_vision_tower", False)
self.delay_load = delay_load
@abstractmethod
def load_model(self, device_map=None):
raise NotImplementedError("Subclasses must implement load_model")
@abstractmethod
def _forward(self, images):
raise NotImplementedError("Subclasses must implement forward")
def forward(self, images):
if type(images) is list:
image_features = [self._forward(image.unsqueeze(0)) for image in images]
else:
image_features = self._forward(images)
return image_features
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
# Dynamically infer the dtype from the first parameter, if not explicitly specified
if hasattr(self.vision_tower, "dtype"):
return self.vision_tower.dtype
else:
params = list(self.vision_tower.parameters())
return (
params[0].dtype if len(params) > 0 else torch.float32
) # Default to torch.float32 if no parameters
@property
def device(self):
# Dynamically infer the device from the first parameter, if not explicitly specified
if hasattr(self.vision_tower, "device"):
return self.vision_tower.device
else:
params = list(self.vision_tower.parameters())
return (
params[0].device if len(params) > 0 else torch.device("cpu")
) # Default to CPU if no parameters
@property
def config(self):
if self.is_loaded:
return self.vision_tower.config
else:
return self.cfg_only
@property
def hidden_size(self):
try:
return self.config.hidden_size
except:
return self._hidden_size
@property
def image_size(self): # resolution
# return self.config.image_size
try:
return self.config.image_size
except:
return self._image_size
@property
def patch_size(self):
# return self.config.patch_size
try:
return self.config.patch_size
except:
return self._patch_size
@property
def num_patches_per_side(self):
if self._interp_size is not None:
return int(self._interp_size**0.5)
try:
return self.image_size // self.patch_size
except:
return self._num_patches_per_side
@property
def num_patches(self):
if self._interp_size is not None:
return self._interp_size
try:
return self.num_patches_per_side**2
except:
return self._num_patches
class DinoVisionTower(BaseVisionTower):
def __init__(self, vision_tower, args, delay_load=False):
super(DinoVisionTower, self).__init__(vision_tower, args, delay_load)
model_path = "facebook/dinov2-giant"
base_model_name, res, interp = model_path, 378, 576
self._vision_tower_name = vision_tower
self.vision_tower_name = base_model_name
self._image_size = res
self._interp_size = interp
self._patch_size = 14 # default patch size
if not self.delay_load:
self.load_model()
else:
self.cfg_only = Dinov2Config.from_pretrained(self.vision_tower_name)
def load_model(self, device_map=None):
self.vision_tower = Dinov2Model.from_pretrained(self.vision_tower_name)
"""ValueError: Dinov2Model does not support `device_map='auto'`. To implement support, the model class needs to implement the `_no_split_modules` attribute."""
self.vision_tower._no_split_modules = ["Dinov2SwiGLUFFN"]
_image_size = self.vision_tower.config.image_size
if self._image_size is None:
self._image_size = _image_size
# increase shortest edge to prevent edge case crops
default_shortest_ratio = 8 / 7 # 224/256
# shortest_edge = int(default_shortest_ratio * self._image_size)
shortest_edge = self._image_size
processor = AutoImageProcessor.from_pretrained(
self.vision_tower_name,
crop_size=dict(height=self._image_size, width=self._image_size),
size=dict(shortest_edge=shortest_edge),
)
self.image_processor = processor
# Assign the output channels of the projection convolution as the hidden size
self._hidden_size = (
self.vision_tower.embeddings.patch_embeddings.projection.out_channels
)
# Assign the first value of the stride of the projection convolution as the patch size
self._patch_size = (
self.vision_tower.embeddings.patch_embeddings.projection.stride[0]
)
# print(self._hidden_size, self._patch_size)
self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower)
self.is_loaded = True
@property
def image_size(self):
return self._image_size
def feature_select(self, outputs):
sequence_output = outputs[
"last_hidden_state"
] # batch_size, sequence_length, hidden_size
if self.select_feature == "cls_patch":
image_features = sequence_output
elif self.select_feature == "patch":
image_features = sequence_output[:, 1:]
elif self.select_feature == "cls":
image_features = sequence_output[:, 0]
else:
raise ValueError(f"Unexpected select feature: {self.select_feature}")
return image_features
def interpolate(self, image_features):
if self._interp_size is None:
return image_features
b, num_tokens, dim = image_features.shape
if num_tokens != self.num_patches:
target_h = target_w = int(self._interp_size**0.5)
h = w = int(num_tokens**0.5)
image_features = image_features.view(b, h, w, dim)
image_features = image_features.permute(0, 3, 1, 2).contiguous()
image_features = F.interpolate(
image_features.to(torch.float32),
size=(target_h, target_w),
mode="bilinear",
align_corners=False,
).to(image_features.dtype)
# Permute the dimensions back to (b, target_h, target_w, dim)
image_features = image_features.permute(0, 2, 3, 1).contiguous()
# Flatten the spatial dimensions (target_h, target_w) into a single dimension
image_features = image_features.flatten(1, 2)
return image_features
def _forward(self, images):
# logger.warning(f"images shape: {images.shape}")
with torch.set_grad_enabled(self.unfreeze_mm_vision_tower):
image_forward_outs = self.vision_tower.forward(
images.to(device=self.device, dtype=self.dtype)
)
# logger.warning(f"image_forward_outs shape: {image_forward_outs['last_hidden_state'].shape}")
image_features = self.feature_select(image_forward_outs).to(images.dtype)
# logger.warning(f"image_features shape: {image_features.shape}")
interp_features = self.interpolate(image_features)
# logger.warning(f"interp_features shape: {interp_features.shape}")
return interp_features
@property
def num_patches_per_side(self):
return int(self.num_patches**0.5)
@property
def num_patches(self):
if self._interp_size is None:
return (self._image_size // self._patch_size) ** 2
else:
return self._interp_size
# from .siglip_encoder import SiglipVisionTower
class SiglipVisionTower(BaseVisionTower):
def __init__(self, vision_tower_name, args, delay_load=False):
super(SiglipVisionTower, self).__init__(vision_tower_name, args, delay_load)
model_path = "google/siglip-so400m-patch14-384"
base_model_name, res, interp = model_path, 384, 576
self.vision_tower_name = base_model_name
self._image_size = res if res is not None else 512
self._interp_size = interp
if not self.delay_load:
self.load_model()
elif self.unfreeze_mm_vision_tower:
self.load_model()
else:
self._hidden_size = 1152
def load_model(self, device_map=None):
self.vision_model = "siglip"
# clip_model, processor = create_model_from_pretrained(self.vision_tower_name)
self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
# self.vision_tower = clip_model.visual.trunk
self.vision_tower.output_tokens = True
self._hidden_size = self.vision_tower.config.hidden_size
self._image_size = self.vision_tower.config.image_size
self._patch_size = self.vision_tower.config.patch_size
self.image_processor = SiglipImageProcessor.from_pretrained(
self.vision_tower_name
)
self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower)
self.is_loaded = True
def interpolate(self, image_features):
if self._interp_size is None:
return image_features
b, num_tokens, dim = image_features.shape
if num_tokens != self.num_patches:
target_h = target_w = int(self._interp_size**0.5)
h = w = int(num_tokens**0.5)
image_features = image_features.view(b, h, w, dim)
image_features = image_features.permute(0, 3, 1, 2).contiguous()
image_features = F.interpolate(
image_features.to(torch.float32),
size=(target_h, target_w),
mode="bilinear",
align_corners=False,
).to(image_features.dtype)
# Permute the dimensions back to (b, target_h, target_w, dim)
image_features = image_features.permute(0, 2, 3, 1).contiguous()
# Flatten the spatial dimensions (target_h, target_w) into a single dimension
image_features = image_features.flatten(1, 2)
return image_features
def _forward(self, images, interpolate_token=576):
with torch.set_grad_enabled(self.unfreeze_mm_vision_tower):
image_features = self.vision_tower.forward(
images.to(device=self.device, dtype=self.dtype),
output_hidden_states=True,
).hidden_states[-1]
interp_features = self.interpolate(image_features)
return interp_features
def build_vision_tower_aux_list(vision_tower_cfg, **kwargs):
vision_tower_aux_name_list = getattr(
vision_tower_cfg,
"mm_vision_tower_aux_list",
getattr(vision_tower_cfg, "vision_tower_aux_list", None),
)
vision_tower_aux_token_len_list = getattr(
vision_tower_cfg,
"mm_vision_tower_aux_token_len_list",
getattr(vision_tower_cfg, "vision_tower_aux_token_len_list", None),
)
vision_tower_aux_list = []
for vision_tower_aux_name, vision_tower_aux_token_len in zip(
vision_tower_aux_name_list, vision_tower_aux_token_len_list
):
config = copy.deepcopy(vision_tower_cfg)
vision_tower_aux_name += "-interp{}".format(vision_tower_aux_token_len)
if "siglip" in vision_tower_aux_name.lower():
vision_tower_aux_list.append(
SiglipVisionTower(vision_tower_aux_name, args=config, **kwargs)
)
# SSL-based Vision Towers
elif "dinov2" in vision_tower_aux_name.lower():
vision_tower_aux_list.append(
DinoVisionTower(vision_tower_aux_name, args=config, **kwargs)
)
else:
raise ValueError(f"Unknown vision tower: {vision_tower_aux_name}")
return vision_tower_aux_list |