jaimin's picture
Model save
bb21e95 verified
|
raw
history blame
2.15 kB
metadata
license: apache-2.0
base_model: microsoft/swinv2-small-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-small-patch4-window8-256-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6818181818181818

swinv2-small-patch4-window8-256-finetuned-eurosat

This model is a fine-tuned version of microsoft/swinv2-small-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6481
  • Accuracy: 0.6818

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.91 5 0.6724 0.5649
0.6041 2.0 11 0.5980 0.7273
0.6041 2.91 16 0.6070 0.6883
0.4131 4.0 22 0.6315 0.6753
0.4131 4.55 25 0.6481 0.6818

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cpu
  • Datasets 2.18.0
  • Tokenizers 0.15.2