|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
widget: |
|
- text: 'brand''s product, powered by product, is making waves by potentially surpassing |
|
brand''s product in ai performance. lets not forget massive developments in ai |
|
from brand, brand, brand and 5 new tools here''s what you need to know:' |
|
- text: 'well... brand launches product tomorrow so it''s going to be much more exciting |
|
than 2x! product ca: 0x09e5e172df245529b22686b77e959d3f2937feb0' |
|
- text: 'brand''s product is product''s newest and greatest competitor yet: here''s |
|
how you can use it within product dlvr.it/szs9nh' |
|
- text: bad actors exploit product to write malicious codes product, ever since its |
|
launch in november last year, has been making lots of noise. with creators experimenting |
|
with it and getting varied results, the product became an acceptable product tool |
|
that couldlnkd.in/drbvpbdt |
|
- text: testing out product. i find it incredibly useful. one way to monetize it is |
|
simply to put paid links related to the search |
|
pipeline_tag: text-classification |
|
inference: true |
|
base_model: BAAI/bge-base-en-v1.5 |
|
model-index: |
|
- name: SetFit with BAAI/bge-base-en-v1.5 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.86 |
|
name: Accuracy |
|
- type: f1 |
|
value: |
|
- 0.2857142857142857 |
|
- 0.5945945945945945 |
|
- 0.9195402298850575 |
|
name: F1 |
|
- type: precision |
|
value: |
|
- 1.0 |
|
- 0.9166666666666666 |
|
- 0.8547008547008547 |
|
name: Precision |
|
- type: recall |
|
value: |
|
- 0.16666666666666666 |
|
- 0.44 |
|
- 0.9950248756218906 |
|
name: Recall |
|
--- |
|
|
|
# SetFit with BAAI/bge-base-en-v1.5 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 3 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:--------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| neither | <ul><li>'ai becomes so much easier to spot when you realize it can replicate, but never understand. its why product usually gives its answers in lists. its a standardized format meant to hide its ignorance to prose.'</li><li>"hakeem jeffries' tweets are getting so productian it's not even funny and boring any more. he may have brand cranking these out."</li><li>'have you tried this with product? i did this with music and got amazing results'</li></ul> | |
|
| peak | <ul><li>'thats rad man. i have adhd and dyslexia and some other cognitive disabilities and honestly brand is a lifesaver.'</li><li>"product is like having a coding partner that understands my style, enhancing my productivity significantly. i've even changed the way i code. my code and process is more modular so it's easier to use the output from product in my code base!"</li><li>'product is an incredible tool for explaining concepts in i prompted it to describe how k-means clustering could be applied to an engagement survey. it generated sample data, explained the concept and how the insights could be applied.'</li></ul> | |
|
| pit | <ul><li>'many similar posts popping up on my timeline frustrated with chatproduct not performing to previous levels defeats the purpose of having an ai assitant available 24/7 if it never wants to do any of the tasks you ask of it'</li><li>"the stuff brand gives is entirely too scripted *and* impractical, which is what i'm trying to avoid:/"</li><li>'so disappointed theyve programmed product to think starvation mode is real'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | F1 | Precision | Recall | |
|
|:--------|:---------|:-------------------------------------------------------------|:----------------------------------------------|:------------------------------------------------| |
|
| **all** | 0.86 | [0.2857142857142857, 0.5945945945945945, 0.9195402298850575] | [1.0, 0.9166666666666666, 0.8547008547008547] | [0.16666666666666666, 0.44, 0.9950248756218906] | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("jamiehudson/725_model_v3") |
|
# Run inference |
|
preds = model("brand's product is product's newest and greatest competitor yet: here's how you can use it within product dlvr.it/szs9nh") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 3 | 27.8534 | 91 | |
|
|
|
| Label | Training Sample Count | |
|
|:--------|:----------------------| |
|
| pit | 26 | |
|
| peak | 51 | |
|
| neither | 1137 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (32, 32) |
|
- num_epochs: (1, 1) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:-----:|:-------------:|:---------------:| |
|
| 0.0012 | 1 | 0.2612 | - | |
|
| 0.0621 | 50 | 0.2009 | - | |
|
| 0.1242 | 100 | 0.0339 | - | |
|
| 0.1863 | 150 | 0.0062 | - | |
|
| 0.2484 | 200 | 0.0039 | - | |
|
| 0.3106 | 250 | 0.0017 | - | |
|
| 0.3727 | 300 | 0.003 | - | |
|
| 0.4348 | 350 | 0.0015 | - | |
|
| 0.4969 | 400 | 0.002 | - | |
|
| 0.5590 | 450 | 0.0022 | - | |
|
| 0.6211 | 500 | 0.0013 | - | |
|
| 0.6832 | 550 | 0.0013 | - | |
|
| 0.7453 | 600 | 0.0014 | - | |
|
| 0.8075 | 650 | 0.0014 | - | |
|
| 0.8696 | 700 | 0.0012 | - | |
|
| 0.9317 | 750 | 0.0014 | - | |
|
| 0.9938 | 800 | 0.0016 | - | |
|
| 0.0000 | 1 | 0.0897 | - | |
|
| 0.0012 | 50 | 0.1107 | - | |
|
| 0.0025 | 100 | 0.065 | - | |
|
| 0.0037 | 150 | 0.1892 | - | |
|
| 0.0049 | 200 | 0.0774 | - | |
|
| 0.0062 | 250 | 0.0391 | - | |
|
| 0.0074 | 300 | 0.117 | - | |
|
| 0.0086 | 350 | 0.0954 | - | |
|
| 0.0099 | 400 | 0.0292 | - | |
|
| 0.0111 | 450 | 0.0327 | - | |
|
| 0.0123 | 500 | 0.0041 | - | |
|
| 0.0136 | 550 | 0.0018 | - | |
|
| 0.0148 | 600 | 0.03 | - | |
|
| 0.0160 | 650 | 0.0015 | - | |
|
| 0.0173 | 700 | 0.0036 | - | |
|
| 0.0185 | 750 | 0.0182 | - | |
|
| 0.0197 | 800 | 0.0017 | - | |
|
| 0.0210 | 850 | 0.0012 | - | |
|
| 0.0222 | 900 | 0.0014 | - | |
|
| 0.0234 | 950 | 0.0011 | - | |
|
| 0.0247 | 1000 | 0.0014 | - | |
|
| 0.0259 | 1050 | 0.0301 | - | |
|
| 0.0271 | 1100 | 0.001 | - | |
|
| 0.0284 | 1150 | 0.0011 | - | |
|
| 0.0296 | 1200 | 0.0009 | - | |
|
| 0.0308 | 1250 | 0.0011 | - | |
|
| 0.0321 | 1300 | 0.0012 | - | |
|
| 0.0333 | 1350 | 0.001 | - | |
|
| 0.0345 | 1400 | 0.0008 | - | |
|
| 0.0358 | 1450 | 0.005 | - | |
|
| 0.0370 | 1500 | 0.0008 | - | |
|
| 0.0382 | 1550 | 0.0044 | - | |
|
| 0.0395 | 1600 | 0.0008 | - | |
|
| 0.0407 | 1650 | 0.0007 | - | |
|
| 0.0419 | 1700 | 0.0014 | - | |
|
| 0.0432 | 1750 | 0.0006 | - | |
|
| 0.0444 | 1800 | 0.001 | - | |
|
| 0.0456 | 1850 | 0.0007 | - | |
|
| 0.0469 | 1900 | 0.0006 | - | |
|
| 0.0481 | 1950 | 0.0006 | - | |
|
| 0.0493 | 2000 | 0.0005 | - | |
|
| 0.0506 | 2050 | 0.0006 | - | |
|
| 0.0518 | 2100 | 0.0041 | - | |
|
| 0.0530 | 2150 | 0.0006 | - | |
|
| 0.0543 | 2200 | 0.0006 | - | |
|
| 0.0555 | 2250 | 0.0007 | - | |
|
| 0.0567 | 2300 | 0.0006 | - | |
|
| 0.0580 | 2350 | 0.0005 | - | |
|
| 0.0592 | 2400 | 0.0007 | - | |
|
| 0.0604 | 2450 | 0.0005 | - | |
|
| 0.0617 | 2500 | 0.0004 | - | |
|
| 0.0629 | 2550 | 0.0005 | - | |
|
| 0.0641 | 2600 | 0.0004 | - | |
|
| 0.0654 | 2650 | 0.0007 | - | |
|
| 0.0666 | 2700 | 0.0004 | - | |
|
| 0.0678 | 2750 | 0.0005 | - | |
|
| 0.0691 | 2800 | 0.0004 | - | |
|
| 0.0703 | 2850 | 0.0004 | - | |
|
| 0.0715 | 2900 | 0.0004 | - | |
|
| 0.0728 | 2950 | 0.0005 | - | |
|
| 0.0740 | 3000 | 0.0004 | - | |
|
| 0.0752 | 3050 | 0.0004 | - | |
|
| 0.0765 | 3100 | 0.0003 | - | |
|
| 0.0777 | 3150 | 0.0003 | - | |
|
| 0.0789 | 3200 | 0.0003 | - | |
|
| 0.0802 | 3250 | 0.0003 | - | |
|
| 0.0814 | 3300 | 0.0004 | - | |
|
| 0.0826 | 3350 | 0.0003 | - | |
|
| 0.0839 | 3400 | 0.0003 | - | |
|
| 0.0851 | 3450 | 0.0007 | - | |
|
| 0.0863 | 3500 | 0.0003 | - | |
|
| 0.0876 | 3550 | 0.0003 | - | |
|
| 0.0888 | 3600 | 0.0004 | - | |
|
| 0.0900 | 3650 | 0.0003 | - | |
|
| 0.0913 | 3700 | 0.0003 | - | |
|
| 0.0925 | 3750 | 0.0004 | - | |
|
| 0.0937 | 3800 | 0.0004 | - | |
|
| 0.0950 | 3850 | 0.0232 | - | |
|
| 0.0962 | 3900 | 0.0004 | - | |
|
| 0.0974 | 3950 | 0.0165 | - | |
|
| 0.0987 | 4000 | 0.0003 | - | |
|
| 0.0999 | 4050 | 0.0229 | - | |
|
| 0.1011 | 4100 | 0.0004 | - | |
|
| 0.1024 | 4150 | 0.0003 | - | |
|
| 0.1036 | 4200 | 0.0004 | - | |
|
| 0.1048 | 4250 | 0.0002 | - | |
|
| 0.1061 | 4300 | 0.0002 | - | |
|
| 0.1073 | 4350 | 0.0002 | - | |
|
| 0.1085 | 4400 | 0.0003 | - | |
|
| 0.1098 | 4450 | 0.0002 | - | |
|
| 0.1110 | 4500 | 0.0002 | - | |
|
| 0.1122 | 4550 | 0.0003 | - | |
|
| 0.1135 | 4600 | 0.0002 | - | |
|
| 0.1147 | 4650 | 0.0002 | - | |
|
| 0.1159 | 4700 | 0.0002 | - | |
|
| 0.1172 | 4750 | 0.0002 | - | |
|
| 0.1184 | 4800 | 0.0002 | - | |
|
| 0.1196 | 4850 | 0.0002 | - | |
|
| 0.1209 | 4900 | 0.0002 | - | |
|
| 0.1221 | 4950 | 0.0002 | - | |
|
| 0.1233 | 5000 | 0.0002 | - | |
|
| 0.1246 | 5050 | 0.0002 | - | |
|
| 0.1258 | 5100 | 0.0002 | - | |
|
| 0.1270 | 5150 | 0.0003 | - | |
|
| 0.1283 | 5200 | 0.0001 | - | |
|
| 0.1295 | 5250 | 0.0002 | - | |
|
| 0.1307 | 5300 | 0.0002 | - | |
|
| 0.1320 | 5350 | 0.0002 | - | |
|
| 0.1332 | 5400 | 0.0001 | - | |
|
| 0.1344 | 5450 | 0.0002 | - | |
|
| 0.1357 | 5500 | 0.0002 | - | |
|
| 0.1369 | 5550 | 0.0002 | - | |
|
| 0.1381 | 5600 | 0.0001 | - | |
|
| 0.1394 | 5650 | 0.0001 | - | |
|
| 0.1406 | 5700 | 0.0001 | - | |
|
| 0.1418 | 5750 | 0.0001 | - | |
|
| 0.1431 | 5800 | 0.0001 | - | |
|
| 0.1443 | 5850 | 0.0001 | - | |
|
| 0.1455 | 5900 | 0.0001 | - | |
|
| 0.1468 | 5950 | 0.0002 | - | |
|
| 0.1480 | 6000 | 0.0001 | - | |
|
| 0.1492 | 6050 | 0.0002 | - | |
|
| 0.1505 | 6100 | 0.0002 | - | |
|
| 0.1517 | 6150 | 0.0004 | - | |
|
| 0.1529 | 6200 | 0.0003 | - | |
|
| 0.1542 | 6250 | 0.0001 | - | |
|
| 0.1554 | 6300 | 0.0003 | - | |
|
| 0.1566 | 6350 | 0.0001 | - | |
|
| 0.1579 | 6400 | 0.0001 | - | |
|
| 0.1591 | 6450 | 0.0002 | - | |
|
| 0.1603 | 6500 | 0.0001 | - | |
|
| 0.1616 | 6550 | 0.0001 | - | |
|
| 0.1628 | 6600 | 0.0001 | - | |
|
| 0.1640 | 6650 | 0.0001 | - | |
|
| 0.1653 | 6700 | 0.0002 | - | |
|
| 0.1665 | 6750 | 0.0001 | - | |
|
| 0.1677 | 6800 | 0.0001 | - | |
|
| 0.1690 | 6850 | 0.0001 | - | |
|
| 0.1702 | 6900 | 0.0001 | - | |
|
| 0.1714 | 6950 | 0.0001 | - | |
|
| 0.1727 | 7000 | 0.0001 | - | |
|
| 0.1739 | 7050 | 0.0001 | - | |
|
| 0.1751 | 7100 | 0.0001 | - | |
|
| 0.1764 | 7150 | 0.0001 | - | |
|
| 0.1776 | 7200 | 0.0001 | - | |
|
| 0.1788 | 7250 | 0.0001 | - | |
|
| 0.1801 | 7300 | 0.0001 | - | |
|
| 0.1813 | 7350 | 0.0001 | - | |
|
| 0.1825 | 7400 | 0.0001 | - | |
|
| 0.1838 | 7450 | 0.0001 | - | |
|
| 0.1850 | 7500 | 0.0001 | - | |
|
| 0.1862 | 7550 | 0.0001 | - | |
|
| 0.1875 | 7600 | 0.0 | - | |
|
| 0.1887 | 7650 | 0.0001 | - | |
|
| 0.1899 | 7700 | 0.0001 | - | |
|
| 0.1912 | 7750 | 0.0001 | - | |
|
| 0.1924 | 7800 | 0.0001 | - | |
|
| 0.1936 | 7850 | 0.0 | - | |
|
| 0.1949 | 7900 | 0.0001 | - | |
|
| 0.1961 | 7950 | 0.0 | - | |
|
| 0.1973 | 8000 | 0.0001 | - | |
|
| 0.1986 | 8050 | 0.0 | - | |
|
| 0.1998 | 8100 | 0.0 | - | |
|
| 0.2010 | 8150 | 0.0 | - | |
|
| 0.2023 | 8200 | 0.0 | - | |
|
| 0.2035 | 8250 | 0.0 | - | |
|
| 0.2047 | 8300 | 0.0 | - | |
|
| 0.2060 | 8350 | 0.0 | - | |
|
| 0.2072 | 8400 | 0.0001 | - | |
|
| 0.2084 | 8450 | 0.0 | - | |
|
| 0.2097 | 8500 | 0.0002 | - | |
|
| 0.2109 | 8550 | 0.0 | - | |
|
| 0.2121 | 8600 | 0.0 | - | |
|
| 0.2134 | 8650 | 0.0 | - | |
|
| 0.2146 | 8700 | 0.0 | - | |
|
| 0.2158 | 8750 | 0.0001 | - | |
|
| 0.2171 | 8800 | 0.0002 | - | |
|
| 0.2183 | 8850 | 0.0 | - | |
|
| 0.2195 | 8900 | 0.0001 | - | |
|
| 0.2208 | 8950 | 0.0 | - | |
|
| 0.2220 | 9000 | 0.0 | - | |
|
| 0.2232 | 9050 | 0.0 | - | |
|
| 0.2245 | 9100 | 0.0 | - | |
|
| 0.2257 | 9150 | 0.0 | - | |
|
| 0.2269 | 9200 | 0.0 | - | |
|
| 0.2282 | 9250 | 0.0 | - | |
|
| 0.2294 | 9300 | 0.0 | - | |
|
| 0.2306 | 9350 | 0.0 | - | |
|
| 0.2319 | 9400 | 0.0 | - | |
|
| 0.2331 | 9450 | 0.0 | - | |
|
| 0.2343 | 9500 | 0.0 | - | |
|
| 0.2356 | 9550 | 0.0 | - | |
|
| 0.2368 | 9600 | 0.0 | - | |
|
| 0.2380 | 9650 | 0.0 | - | |
|
| 0.2393 | 9700 | 0.0 | - | |
|
| 0.2405 | 9750 | 0.0 | - | |
|
| 0.2417 | 9800 | 0.0 | - | |
|
| 0.2430 | 9850 | 0.0 | - | |
|
| 0.2442 | 9900 | 0.0 | - | |
|
| 0.2454 | 9950 | 0.0 | - | |
|
| 0.2467 | 10000 | 0.0 | - | |
|
| 0.2479 | 10050 | 0.0 | - | |
|
| 0.2491 | 10100 | 0.0 | - | |
|
| 0.2504 | 10150 | 0.0 | - | |
|
| 0.2516 | 10200 | 0.0 | - | |
|
| 0.2528 | 10250 | 0.0 | - | |
|
| 0.2541 | 10300 | 0.0001 | - | |
|
| 0.2553 | 10350 | 0.0001 | - | |
|
| 0.2565 | 10400 | 0.0 | - | |
|
| 0.2578 | 10450 | 0.0 | - | |
|
| 0.2590 | 10500 | 0.0 | - | |
|
| 0.2602 | 10550 | 0.0 | - | |
|
| 0.2615 | 10600 | 0.0 | - | |
|
| 0.2627 | 10650 | 0.0 | - | |
|
| 0.2639 | 10700 | 0.0 | - | |
|
| 0.2652 | 10750 | 0.0 | - | |
|
| 0.2664 | 10800 | 0.0 | - | |
|
| 0.2676 | 10850 | 0.0 | - | |
|
| 0.2689 | 10900 | 0.0 | - | |
|
| 0.2701 | 10950 | 0.0 | - | |
|
| 0.2713 | 11000 | 0.0 | - | |
|
| 0.2726 | 11050 | 0.0 | - | |
|
| 0.2738 | 11100 | 0.0 | - | |
|
| 0.2750 | 11150 | 0.0 | - | |
|
| 0.2763 | 11200 | 0.0 | - | |
|
| 0.2775 | 11250 | 0.0 | - | |
|
| 0.2787 | 11300 | 0.0 | - | |
|
| 0.2800 | 11350 | 0.0 | - | |
|
| 0.2812 | 11400 | 0.0 | - | |
|
| 0.2824 | 11450 | 0.0 | - | |
|
| 0.2837 | 11500 | 0.0 | - | |
|
| 0.2849 | 11550 | 0.0 | - | |
|
| 0.2861 | 11600 | 0.0 | - | |
|
| 0.2874 | 11650 | 0.0001 | - | |
|
| 0.2886 | 11700 | 0.0301 | - | |
|
| 0.2898 | 11750 | 0.0 | - | |
|
| 0.2911 | 11800 | 0.0 | - | |
|
| 0.2923 | 11850 | 0.0 | - | |
|
| 0.2935 | 11900 | 0.0 | - | |
|
| 0.2948 | 11950 | 0.0 | - | |
|
| 0.2960 | 12000 | 0.0 | - | |
|
| 0.2972 | 12050 | 0.0 | - | |
|
| 0.2985 | 12100 | 0.0 | - | |
|
| 0.2997 | 12150 | 0.0 | - | |
|
| 0.3009 | 12200 | 0.0001 | - | |
|
| 0.3022 | 12250 | 0.0 | - | |
|
| 0.3034 | 12300 | 0.0 | - | |
|
| 0.3046 | 12350 | 0.0 | - | |
|
| 0.3059 | 12400 | 0.0 | - | |
|
| 0.3071 | 12450 | 0.0 | - | |
|
| 0.3083 | 12500 | 0.0 | - | |
|
| 0.3096 | 12550 | 0.0 | - | |
|
| 0.3108 | 12600 | 0.0 | - | |
|
| 0.3120 | 12650 | 0.0 | - | |
|
| 0.3133 | 12700 | 0.0 | - | |
|
| 0.3145 | 12750 | 0.0 | - | |
|
| 0.3157 | 12800 | 0.0 | - | |
|
| 0.3170 | 12850 | 0.0 | - | |
|
| 0.3182 | 12900 | 0.0 | - | |
|
| 0.3194 | 12950 | 0.0 | - | |
|
| 0.3207 | 13000 | 0.0 | - | |
|
| 0.3219 | 13050 | 0.0001 | - | |
|
| 0.3231 | 13100 | 0.0 | - | |
|
| 0.3244 | 13150 | 0.0 | - | |
|
| 0.3256 | 13200 | 0.0 | - | |
|
| 0.3268 | 13250 | 0.0 | - | |
|
| 0.3281 | 13300 | 0.0 | - | |
|
| 0.3293 | 13350 | 0.0 | - | |
|
| 0.3305 | 13400 | 0.0 | - | |
|
| 0.3318 | 13450 | 0.0 | - | |
|
| 0.3330 | 13500 | 0.0 | - | |
|
| 0.3342 | 13550 | 0.0 | - | |
|
| 0.3355 | 13600 | 0.0 | - | |
|
| 0.3367 | 13650 | 0.0 | - | |
|
| 0.3379 | 13700 | 0.0 | - | |
|
| 0.3392 | 13750 | 0.0 | - | |
|
| 0.3404 | 13800 | 0.0 | - | |
|
| 0.3416 | 13850 | 0.0 | - | |
|
| 0.3429 | 13900 | 0.0 | - | |
|
| 0.3441 | 13950 | 0.0 | - | |
|
| 0.3453 | 14000 | 0.0 | - | |
|
| 0.3466 | 14050 | 0.0 | - | |
|
| 0.3478 | 14100 | 0.0 | - | |
|
| 0.3490 | 14150 | 0.0 | - | |
|
| 0.3503 | 14200 | 0.0 | - | |
|
| 0.3515 | 14250 | 0.0 | - | |
|
| 0.3527 | 14300 | 0.0 | - | |
|
| 0.3540 | 14350 | 0.0 | - | |
|
| 0.3552 | 14400 | 0.0001 | - | |
|
| 0.3564 | 14450 | 0.0 | - | |
|
| 0.3577 | 14500 | 0.0 | - | |
|
| 0.3589 | 14550 | 0.0 | - | |
|
| 0.3601 | 14600 | 0.0 | - | |
|
| 0.3614 | 14650 | 0.0 | - | |
|
| 0.3626 | 14700 | 0.0 | - | |
|
| 0.3638 | 14750 | 0.0 | - | |
|
| 0.3651 | 14800 | 0.0 | - | |
|
| 0.3663 | 14850 | 0.0 | - | |
|
| 0.3675 | 14900 | 0.0 | - | |
|
| 0.3688 | 14950 | 0.0 | - | |
|
| 0.3700 | 15000 | 0.0 | - | |
|
| 0.3712 | 15050 | 0.0 | - | |
|
| 0.3725 | 15100 | 0.0 | - | |
|
| 0.3737 | 15150 | 0.0 | - | |
|
| 0.3749 | 15200 | 0.0 | - | |
|
| 0.3762 | 15250 | 0.0 | - | |
|
| 0.3774 | 15300 | 0.0 | - | |
|
| 0.3786 | 15350 | 0.0 | - | |
|
| 0.3799 | 15400 | 0.0 | - | |
|
| 0.3811 | 15450 | 0.0 | - | |
|
| 0.3823 | 15500 | 0.0 | - | |
|
| 0.3836 | 15550 | 0.0 | - | |
|
| 0.3848 | 15600 | 0.0 | - | |
|
| 0.3860 | 15650 | 0.0 | - | |
|
| 0.3873 | 15700 | 0.0 | - | |
|
| 0.3885 | 15750 | 0.0 | - | |
|
| 0.3897 | 15800 | 0.0001 | - | |
|
| 0.3910 | 15850 | 0.0 | - | |
|
| 0.3922 | 15900 | 0.0 | - | |
|
| 0.3934 | 15950 | 0.0 | - | |
|
| 0.3947 | 16000 | 0.0 | - | |
|
| 0.3959 | 16050 | 0.0 | - | |
|
| 0.3971 | 16100 | 0.0 | - | |
|
| 0.3984 | 16150 | 0.0 | - | |
|
| 0.3996 | 16200 | 0.0 | - | |
|
| 0.4008 | 16250 | 0.0 | - | |
|
| 0.4021 | 16300 | 0.0 | - | |
|
| 0.4033 | 16350 | 0.0 | - | |
|
| 0.4045 | 16400 | 0.0 | - | |
|
| 0.4058 | 16450 | 0.0001 | - | |
|
| 0.4070 | 16500 | 0.0 | - | |
|
| 0.4082 | 16550 | 0.0 | - | |
|
| 0.4095 | 16600 | 0.0 | - | |
|
| 0.4107 | 16650 | 0.0 | - | |
|
| 0.4119 | 16700 | 0.0 | - | |
|
| 0.4132 | 16750 | 0.0 | - | |
|
| 0.4144 | 16800 | 0.0001 | - | |
|
| 0.4156 | 16850 | 0.0 | - | |
|
| 0.4169 | 16900 | 0.0 | - | |
|
| 0.4181 | 16950 | 0.0 | - | |
|
| 0.4193 | 17000 | 0.0 | - | |
|
| 0.4206 | 17050 | 0.0 | - | |
|
| 0.4218 | 17100 | 0.0 | - | |
|
| 0.4230 | 17150 | 0.0 | - | |
|
| 0.4243 | 17200 | 0.0 | - | |
|
| 0.4255 | 17250 | 0.0 | - | |
|
| 0.4267 | 17300 | 0.0 | - | |
|
| 0.4280 | 17350 | 0.0 | - | |
|
| 0.4292 | 17400 | 0.0 | - | |
|
| 0.4304 | 17450 | 0.0 | - | |
|
| 0.4317 | 17500 | 0.0 | - | |
|
| 0.4329 | 17550 | 0.0 | - | |
|
| 0.4341 | 17600 | 0.0 | - | |
|
| 0.4354 | 17650 | 0.0 | - | |
|
| 0.4366 | 17700 | 0.0 | - | |
|
| 0.4378 | 17750 | 0.0 | - | |
|
| 0.4391 | 17800 | 0.0 | - | |
|
| 0.4403 | 17850 | 0.0 | - | |
|
| 0.4415 | 17900 | 0.0 | - | |
|
| 0.4428 | 17950 | 0.0 | - | |
|
| 0.4440 | 18000 | 0.0 | - | |
|
| 0.4452 | 18050 | 0.0 | - | |
|
| 0.4465 | 18100 | 0.0 | - | |
|
| 0.4477 | 18150 | 0.0 | - | |
|
| 0.4489 | 18200 | 0.0 | - | |
|
| 0.4502 | 18250 | 0.0 | - | |
|
| 0.4514 | 18300 | 0.0 | - | |
|
| 0.4526 | 18350 | 0.0 | - | |
|
| 0.4539 | 18400 | 0.0 | - | |
|
| 0.4551 | 18450 | 0.0001 | - | |
|
| 0.4563 | 18500 | 0.0 | - | |
|
| 0.4576 | 18550 | 0.0 | - | |
|
| 0.4588 | 18600 | 0.0 | - | |
|
| 0.4600 | 18650 | 0.0 | - | |
|
| 0.4613 | 18700 | 0.0 | - | |
|
| 0.4625 | 18750 | 0.0 | - | |
|
| 0.4637 | 18800 | 0.0 | - | |
|
| 0.4650 | 18850 | 0.0 | - | |
|
| 0.4662 | 18900 | 0.0 | - | |
|
| 0.4674 | 18950 | 0.0 | - | |
|
| 0.4687 | 19000 | 0.0 | - | |
|
| 0.4699 | 19050 | 0.0 | - | |
|
| 0.4711 | 19100 | 0.0 | - | |
|
| 0.4724 | 19150 | 0.0 | - | |
|
| 0.4736 | 19200 | 0.0 | - | |
|
| 0.4748 | 19250 | 0.0 | - | |
|
| 0.4761 | 19300 | 0.0 | - | |
|
| 0.4773 | 19350 | 0.0 | - | |
|
| 0.4785 | 19400 | 0.0 | - | |
|
| 0.4798 | 19450 | 0.0 | - | |
|
| 0.4810 | 19500 | 0.0 | - | |
|
| 0.4822 | 19550 | 0.0 | - | |
|
| 0.4835 | 19600 | 0.0 | - | |
|
| 0.4847 | 19650 | 0.0 | - | |
|
| 0.4859 | 19700 | 0.0 | - | |
|
| 0.4872 | 19750 | 0.0 | - | |
|
| 0.4884 | 19800 | 0.0 | - | |
|
| 0.4896 | 19850 | 0.0 | - | |
|
| 0.4909 | 19900 | 0.0 | - | |
|
| 0.4921 | 19950 | 0.0 | - | |
|
| 0.4933 | 20000 | 0.0 | - | |
|
| 0.4946 | 20050 | 0.0 | - | |
|
| 0.4958 | 20100 | 0.0 | - | |
|
| 0.4970 | 20150 | 0.0 | - | |
|
| 0.4983 | 20200 | 0.0 | - | |
|
| 0.4995 | 20250 | 0.0 | - | |
|
| 0.5007 | 20300 | 0.0 | - | |
|
| 0.5020 | 20350 | 0.0 | - | |
|
| 0.5032 | 20400 | 0.0001 | - | |
|
| 0.5044 | 20450 | 0.0 | - | |
|
| 0.5057 | 20500 | 0.0 | - | |
|
| 0.5069 | 20550 | 0.0 | - | |
|
| 0.5081 | 20600 | 0.0 | - | |
|
| 0.5094 | 20650 | 0.0 | - | |
|
| 0.5106 | 20700 | 0.0 | - | |
|
| 0.5118 | 20750 | 0.0 | - | |
|
| 0.5131 | 20800 | 0.0 | - | |
|
| 0.5143 | 20850 | 0.0 | - | |
|
| 0.5155 | 20900 | 0.0 | - | |
|
| 0.5168 | 20950 | 0.0 | - | |
|
| 0.5180 | 21000 | 0.0 | - | |
|
| 0.5192 | 21050 | 0.0 | - | |
|
| 0.5205 | 21100 | 0.0 | - | |
|
| 0.5217 | 21150 | 0.0001 | - | |
|
| 0.5229 | 21200 | 0.0 | - | |
|
| 0.5242 | 21250 | 0.0 | - | |
|
| 0.5254 | 21300 | 0.0 | - | |
|
| 0.5266 | 21350 | 0.0 | - | |
|
| 0.5279 | 21400 | 0.0 | - | |
|
| 0.5291 | 21450 | 0.0001 | - | |
|
| 0.5303 | 21500 | 0.0 | - | |
|
| 0.5316 | 21550 | 0.0 | - | |
|
| 0.5328 | 21600 | 0.0 | - | |
|
| 0.5340 | 21650 | 0.0 | - | |
|
| 0.5353 | 21700 | 0.0 | - | |
|
| 0.5365 | 21750 | 0.0 | - | |
|
| 0.5377 | 21800 | 0.0 | - | |
|
| 0.5390 | 21850 | 0.0 | - | |
|
| 0.5402 | 21900 | 0.0 | - | |
|
| 0.5414 | 21950 | 0.0 | - | |
|
| 0.5427 | 22000 | 0.0 | - | |
|
| 0.5439 | 22050 | 0.0 | - | |
|
| 0.5451 | 22100 | 0.0 | - | |
|
| 0.5464 | 22150 | 0.0 | - | |
|
| 0.5476 | 22200 | 0.0 | - | |
|
| 0.5488 | 22250 | 0.0 | - | |
|
| 0.5501 | 22300 | 0.0001 | - | |
|
| 0.5513 | 22350 | 0.0 | - | |
|
| 0.5525 | 22400 | 0.0 | - | |
|
| 0.5538 | 22450 | 0.0 | - | |
|
| 0.5550 | 22500 | 0.0 | - | |
|
| 0.5562 | 22550 | 0.0 | - | |
|
| 0.5575 | 22600 | 0.0 | - | |
|
| 0.5587 | 22650 | 0.0 | - | |
|
| 0.5599 | 22700 | 0.0 | - | |
|
| 0.5612 | 22750 | 0.0 | - | |
|
| 0.5624 | 22800 | 0.0 | - | |
|
| 0.5636 | 22850 | 0.0 | - | |
|
| 0.5649 | 22900 | 0.0 | - | |
|
| 0.5661 | 22950 | 0.0 | - | |
|
| 0.5673 | 23000 | 0.0 | - | |
|
| 0.5686 | 23050 | 0.0 | - | |
|
| 0.5698 | 23100 | 0.0 | - | |
|
| 0.5710 | 23150 | 0.0 | - | |
|
| 0.5723 | 23200 | 0.0 | - | |
|
| 0.5735 | 23250 | 0.0 | - | |
|
| 0.5747 | 23300 | 0.0 | - | |
|
| 0.5760 | 23350 | 0.0 | - | |
|
| 0.5772 | 23400 | 0.0 | - | |
|
| 0.5784 | 23450 | 0.0 | - | |
|
| 0.5797 | 23500 | 0.0 | - | |
|
| 0.5809 | 23550 | 0.0 | - | |
|
| 0.5821 | 23600 | 0.0 | - | |
|
| 0.5834 | 23650 | 0.0 | - | |
|
| 0.5846 | 23700 | 0.0 | - | |
|
| 0.5858 | 23750 | 0.0 | - | |
|
| 0.5871 | 23800 | 0.0001 | - | |
|
| 0.5883 | 23850 | 0.0 | - | |
|
| 0.5895 | 23900 | 0.0 | - | |
|
| 0.5908 | 23950 | 0.0 | - | |
|
| 0.5920 | 24000 | 0.0 | - | |
|
| 0.5932 | 24050 | 0.0 | - | |
|
| 0.5945 | 24100 | 0.0 | - | |
|
| 0.5957 | 24150 | 0.0 | - | |
|
| 0.5969 | 24200 | 0.0 | - | |
|
| 0.5982 | 24250 | 0.0 | - | |
|
| 0.5994 | 24300 | 0.0 | - | |
|
| 0.6006 | 24350 | 0.0 | - | |
|
| 0.6019 | 24400 | 0.0 | - | |
|
| 0.6031 | 24450 | 0.0 | - | |
|
| 0.6043 | 24500 | 0.0 | - | |
|
| 0.6056 | 24550 | 0.0 | - | |
|
| 0.6068 | 24600 | 0.0 | - | |
|
| 0.6080 | 24650 | 0.0 | - | |
|
| 0.6093 | 24700 | 0.0 | - | |
|
| 0.6105 | 24750 | 0.0 | - | |
|
| 0.6117 | 24800 | 0.0 | - | |
|
| 0.6130 | 24850 | 0.0001 | - | |
|
| 0.6142 | 24900 | 0.0 | - | |
|
| 0.6154 | 24950 | 0.0 | - | |
|
| 0.6167 | 25000 | 0.0001 | - | |
|
| 0.6179 | 25050 | 0.0 | - | |
|
| 0.6191 | 25100 | 0.0 | - | |
|
| 0.6204 | 25150 | 0.0 | - | |
|
| 0.6216 | 25200 | 0.0 | - | |
|
| 0.6228 | 25250 | 0.0 | - | |
|
| 0.6241 | 25300 | 0.0 | - | |
|
| 0.6253 | 25350 | 0.0 | - | |
|
| 0.6265 | 25400 | 0.0 | - | |
|
| 0.6278 | 25450 | 0.0 | - | |
|
| 0.6290 | 25500 | 0.0 | - | |
|
| 0.6302 | 25550 | 0.0 | - | |
|
| 0.6315 | 25600 | 0.0 | - | |
|
| 0.6327 | 25650 | 0.0 | - | |
|
| 0.6339 | 25700 | 0.0 | - | |
|
| 0.6352 | 25750 | 0.0001 | - | |
|
| 0.6364 | 25800 | 0.0 | - | |
|
| 0.6376 | 25850 | 0.0 | - | |
|
| 0.6389 | 25900 | 0.0 | - | |
|
| 0.6401 | 25950 | 0.0 | - | |
|
| 0.6413 | 26000 | 0.0 | - | |
|
| 0.6426 | 26050 | 0.0 | - | |
|
| 0.6438 | 26100 | 0.0 | - | |
|
| 0.6450 | 26150 | 0.0 | - | |
|
| 0.6463 | 26200 | 0.0 | - | |
|
| 0.6475 | 26250 | 0.0 | - | |
|
| 0.6487 | 26300 | 0.0 | - | |
|
| 0.6500 | 26350 | 0.0 | - | |
|
| 0.6512 | 26400 | 0.0 | - | |
|
| 0.6524 | 26450 | 0.0 | - | |
|
| 0.6537 | 26500 | 0.0 | - | |
|
| 0.6549 | 26550 | 0.0 | - | |
|
| 0.6561 | 26600 | 0.0 | - | |
|
| 0.6574 | 26650 | 0.0 | - | |
|
| 0.6586 | 26700 | 0.0 | - | |
|
| 0.6598 | 26750 | 0.0 | - | |
|
| 0.6611 | 26800 | 0.0 | - | |
|
| 0.6623 | 26850 | 0.0 | - | |
|
| 0.6635 | 26900 | 0.0 | - | |
|
| 0.6648 | 26950 | 0.0 | - | |
|
| 0.6660 | 27000 | 0.0 | - | |
|
| 0.6672 | 27050 | 0.0 | - | |
|
| 0.6685 | 27100 | 0.0 | - | |
|
| 0.6697 | 27150 | 0.0 | - | |
|
| 0.6709 | 27200 | 0.0 | - | |
|
| 0.6722 | 27250 | 0.0 | - | |
|
| 0.6734 | 27300 | 0.0 | - | |
|
| 0.6746 | 27350 | 0.0 | - | |
|
| 0.6759 | 27400 | 0.0 | - | |
|
| 0.6771 | 27450 | 0.0 | - | |
|
| 0.6783 | 27500 | 0.0 | - | |
|
| 0.6796 | 27550 | 0.0 | - | |
|
| 0.6808 | 27600 | 0.0 | - | |
|
| 0.6820 | 27650 | 0.0 | - | |
|
| 0.6833 | 27700 | 0.0 | - | |
|
| 0.6845 | 27750 | 0.0 | - | |
|
| 0.6857 | 27800 | 0.0 | - | |
|
| 0.6870 | 27850 | 0.0 | - | |
|
| 0.6882 | 27900 | 0.0 | - | |
|
| 0.6894 | 27950 | 0.0 | - | |
|
| 0.6907 | 28000 | 0.0 | - | |
|
| 0.6919 | 28050 | 0.0 | - | |
|
| 0.6931 | 28100 | 0.0 | - | |
|
| 0.6944 | 28150 | 0.0 | - | |
|
| 0.6956 | 28200 | 0.0 | - | |
|
| 0.6968 | 28250 | 0.0 | - | |
|
| 0.6981 | 28300 | 0.0 | - | |
|
| 0.6993 | 28350 | 0.0 | - | |
|
| 0.7005 | 28400 | 0.0 | - | |
|
| 0.7018 | 28450 | 0.0 | - | |
|
| 0.7030 | 28500 | 0.0 | - | |
|
| 0.7042 | 28550 | 0.0 | - | |
|
| 0.7055 | 28600 | 0.0 | - | |
|
| 0.7067 | 28650 | 0.0 | - | |
|
| 0.7079 | 28700 | 0.0 | - | |
|
| 0.7092 | 28750 | 0.0 | - | |
|
| 0.7104 | 28800 | 0.0 | - | |
|
| 0.7116 | 28850 | 0.0 | - | |
|
| 0.7129 | 28900 | 0.0 | - | |
|
| 0.7141 | 28950 | 0.0 | - | |
|
| 0.7153 | 29000 | 0.0 | - | |
|
| 0.7166 | 29050 | 0.0 | - | |
|
| 0.7178 | 29100 | 0.0 | - | |
|
| 0.7190 | 29150 | 0.0 | - | |
|
| 0.7203 | 29200 | 0.0001 | - | |
|
| 0.7215 | 29250 | 0.0 | - | |
|
| 0.7227 | 29300 | 0.0 | - | |
|
| 0.7240 | 29350 | 0.0 | - | |
|
| 0.7252 | 29400 | 0.0 | - | |
|
| 0.7264 | 29450 | 0.0 | - | |
|
| 0.7277 | 29500 | 0.0 | - | |
|
| 0.7289 | 29550 | 0.0 | - | |
|
| 0.7301 | 29600 | 0.0 | - | |
|
| 0.7314 | 29650 | 0.0 | - | |
|
| 0.7326 | 29700 | 0.0 | - | |
|
| 0.7338 | 29750 | 0.0 | - | |
|
| 0.7351 | 29800 | 0.0 | - | |
|
| 0.7363 | 29850 | 0.0 | - | |
|
| 0.7375 | 29900 | 0.0 | - | |
|
| 0.7388 | 29950 | 0.0 | - | |
|
| 0.7400 | 30000 | 0.0 | - | |
|
| 0.7412 | 30050 | 0.0 | - | |
|
| 0.7425 | 30100 | 0.0 | - | |
|
| 0.7437 | 30150 | 0.0 | - | |
|
| 0.7449 | 30200 | 0.0 | - | |
|
| 0.7462 | 30250 | 0.0 | - | |
|
| 0.7474 | 30300 | 0.0 | - | |
|
| 0.7486 | 30350 | 0.0 | - | |
|
| 0.7499 | 30400 | 0.0 | - | |
|
| 0.7511 | 30450 | 0.0 | - | |
|
| 0.7523 | 30500 | 0.0 | - | |
|
| 0.7536 | 30550 | 0.0 | - | |
|
| 0.7548 | 30600 | 0.0 | - | |
|
| 0.7560 | 30650 | 0.0 | - | |
|
| 0.7573 | 30700 | 0.0001 | - | |
|
| 0.7585 | 30750 | 0.0 | - | |
|
| 0.7597 | 30800 | 0.0 | - | |
|
| 0.7610 | 30850 | 0.0 | - | |
|
| 0.7622 | 30900 | 0.0 | - | |
|
| 0.7634 | 30950 | 0.0 | - | |
|
| 0.7647 | 31000 | 0.0 | - | |
|
| 0.7659 | 31050 | 0.0 | - | |
|
| 0.7671 | 31100 | 0.0 | - | |
|
| 0.7684 | 31150 | 0.0 | - | |
|
| 0.7696 | 31200 | 0.0 | - | |
|
| 0.7708 | 31250 | 0.0 | - | |
|
| 0.7721 | 31300 | 0.0 | - | |
|
| 0.7733 | 31350 | 0.0 | - | |
|
| 0.7745 | 31400 | 0.0 | - | |
|
| 0.7758 | 31450 | 0.0 | - | |
|
| 0.7770 | 31500 | 0.0 | - | |
|
| 0.7782 | 31550 | 0.0 | - | |
|
| 0.7795 | 31600 | 0.0 | - | |
|
| 0.7807 | 31650 | 0.0 | - | |
|
| 0.7819 | 31700 | 0.0 | - | |
|
| 0.7832 | 31750 | 0.0 | - | |
|
| 0.7844 | 31800 | 0.0 | - | |
|
| 0.7856 | 31850 | 0.0 | - | |
|
| 0.7869 | 31900 | 0.0 | - | |
|
| 0.7881 | 31950 | 0.0 | - | |
|
| 0.7893 | 32000 | 0.0 | - | |
|
| 0.7906 | 32050 | 0.0 | - | |
|
| 0.7918 | 32100 | 0.0 | - | |
|
| 0.7930 | 32150 | 0.0 | - | |
|
| 0.7943 | 32200 | 0.0 | - | |
|
| 0.7955 | 32250 | 0.0 | - | |
|
| 0.7967 | 32300 | 0.0 | - | |
|
| 0.7980 | 32350 | 0.0 | - | |
|
| 0.7992 | 32400 | 0.0 | - | |
|
| 0.8004 | 32450 | 0.0 | - | |
|
| 0.8017 | 32500 | 0.0 | - | |
|
| 0.8029 | 32550 | 0.0 | - | |
|
| 0.8041 | 32600 | 0.0 | - | |
|
| 0.8054 | 32650 | 0.0 | - | |
|
| 0.8066 | 32700 | 0.0 | - | |
|
| 0.8078 | 32750 | 0.0 | - | |
|
| 0.8091 | 32800 | 0.0 | - | |
|
| 0.8103 | 32850 | 0.0 | - | |
|
| 0.8115 | 32900 | 0.0 | - | |
|
| 0.8128 | 32950 | 0.0 | - | |
|
| 0.8140 | 33000 | 0.0 | - | |
|
| 0.8152 | 33050 | 0.0 | - | |
|
| 0.8165 | 33100 | 0.0 | - | |
|
| 0.8177 | 33150 | 0.0 | - | |
|
| 0.8189 | 33200 | 0.0 | - | |
|
| 0.8202 | 33250 | 0.0 | - | |
|
| 0.8214 | 33300 | 0.0 | - | |
|
| 0.8226 | 33350 | 0.0 | - | |
|
| 0.8239 | 33400 | 0.0 | - | |
|
| 0.8251 | 33450 | 0.0001 | - | |
|
| 0.8263 | 33500 | 0.0 | - | |
|
| 0.8276 | 33550 | 0.0 | - | |
|
| 0.8288 | 33600 | 0.0 | - | |
|
| 0.8300 | 33650 | 0.0 | - | |
|
| 0.8313 | 33700 | 0.0 | - | |
|
| 0.8325 | 33750 | 0.0 | - | |
|
| 0.8337 | 33800 | 0.0 | - | |
|
| 0.8350 | 33850 | 0.0 | - | |
|
| 0.8362 | 33900 | 0.0 | - | |
|
| 0.8374 | 33950 | 0.0 | - | |
|
| 0.8387 | 34000 | 0.0 | - | |
|
| 0.8399 | 34050 | 0.0 | - | |
|
| 0.8411 | 34100 | 0.0 | - | |
|
| 0.8424 | 34150 | 0.0 | - | |
|
| 0.8436 | 34200 | 0.0 | - | |
|
| 0.8448 | 34250 | 0.0 | - | |
|
| 0.8461 | 34300 | 0.0 | - | |
|
| 0.8473 | 34350 | 0.0 | - | |
|
| 0.8485 | 34400 | 0.0 | - | |
|
| 0.8498 | 34450 | 0.0 | - | |
|
| 0.8510 | 34500 | 0.0 | - | |
|
| 0.8522 | 34550 | 0.0 | - | |
|
| 0.8535 | 34600 | 0.0 | - | |
|
| 0.8547 | 34650 | 0.0 | - | |
|
| 0.8559 | 34700 | 0.0 | - | |
|
| 0.8572 | 34750 | 0.0 | - | |
|
| 0.8584 | 34800 | 0.0 | - | |
|
| 0.8596 | 34850 | 0.0 | - | |
|
| 0.8609 | 34900 | 0.0 | - | |
|
| 0.8621 | 34950 | 0.0 | - | |
|
| 0.8633 | 35000 | 0.0 | - | |
|
| 0.8646 | 35050 | 0.0 | - | |
|
| 0.8658 | 35100 | 0.0 | - | |
|
| 0.8670 | 35150 | 0.0 | - | |
|
| 0.8683 | 35200 | 0.0 | - | |
|
| 0.8695 | 35250 | 0.0 | - | |
|
| 0.8707 | 35300 | 0.0 | - | |
|
| 0.8720 | 35350 | 0.0 | - | |
|
| 0.8732 | 35400 | 0.0 | - | |
|
| 0.8744 | 35450 | 0.0 | - | |
|
| 0.8757 | 35500 | 0.0 | - | |
|
| 0.8769 | 35550 | 0.0 | - | |
|
| 0.8781 | 35600 | 0.0 | - | |
|
| 0.8794 | 35650 | 0.0 | - | |
|
| 0.8806 | 35700 | 0.0 | - | |
|
| 0.8818 | 35750 | 0.0 | - | |
|
| 0.8831 | 35800 | 0.0 | - | |
|
| 0.8843 | 35850 | 0.0 | - | |
|
| 0.8855 | 35900 | 0.0 | - | |
|
| 0.8868 | 35950 | 0.0 | - | |
|
| 0.8880 | 36000 | 0.0 | - | |
|
| 0.8892 | 36050 | 0.0 | - | |
|
| 0.8905 | 36100 | 0.0 | - | |
|
| 0.8917 | 36150 | 0.0 | - | |
|
| 0.8929 | 36200 | 0.0 | - | |
|
| 0.8942 | 36250 | 0.0 | - | |
|
| 0.8954 | 36300 | 0.0 | - | |
|
| 0.8966 | 36350 | 0.0 | - | |
|
| 0.8979 | 36400 | 0.0 | - | |
|
| 0.8991 | 36450 | 0.0 | - | |
|
| 0.9003 | 36500 | 0.0 | - | |
|
| 0.9016 | 36550 | 0.0 | - | |
|
| 0.9028 | 36600 | 0.0 | - | |
|
| 0.9040 | 36650 | 0.0 | - | |
|
| 0.9053 | 36700 | 0.0 | - | |
|
| 0.9065 | 36750 | 0.0 | - | |
|
| 0.9077 | 36800 | 0.0 | - | |
|
| 0.9090 | 36850 | 0.0 | - | |
|
| 0.9102 | 36900 | 0.0 | - | |
|
| 0.9114 | 36950 | 0.0 | - | |
|
| 0.9127 | 37000 | 0.0 | - | |
|
| 0.9139 | 37050 | 0.0 | - | |
|
| 0.9151 | 37100 | 0.0 | - | |
|
| 0.9164 | 37150 | 0.0 | - | |
|
| 0.9176 | 37200 | 0.0 | - | |
|
| 0.9188 | 37250 | 0.0 | - | |
|
| 0.9201 | 37300 | 0.0 | - | |
|
| 0.9213 | 37350 | 0.0 | - | |
|
| 0.9225 | 37400 | 0.0 | - | |
|
| 0.9238 | 37450 | 0.0 | - | |
|
| 0.9250 | 37500 | 0.0 | - | |
|
| 0.9262 | 37550 | 0.0 | - | |
|
| 0.9275 | 37600 | 0.0 | - | |
|
| 0.9287 | 37650 | 0.0 | - | |
|
| 0.9299 | 37700 | 0.0 | - | |
|
| 0.9312 | 37750 | 0.0 | - | |
|
| 0.9324 | 37800 | 0.0 | - | |
|
| 0.9336 | 37850 | 0.0 | - | |
|
| 0.9349 | 37900 | 0.0 | - | |
|
| 0.9361 | 37950 | 0.0 | - | |
|
| 0.9373 | 38000 | 0.0 | - | |
|
| 0.9386 | 38050 | 0.0 | - | |
|
| 0.9398 | 38100 | 0.0 | - | |
|
| 0.9410 | 38150 | 0.0 | - | |
|
| 0.9423 | 38200 | 0.0 | - | |
|
| 0.9435 | 38250 | 0.0 | - | |
|
| 0.9447 | 38300 | 0.0 | - | |
|
| 0.9460 | 38350 | 0.0 | - | |
|
| 0.9472 | 38400 | 0.0 | - | |
|
| 0.9484 | 38450 | 0.0 | - | |
|
| 0.9497 | 38500 | 0.0 | - | |
|
| 0.9509 | 38550 | 0.0 | - | |
|
| 0.9521 | 38600 | 0.0 | - | |
|
| 0.9534 | 38650 | 0.0 | - | |
|
| 0.9546 | 38700 | 0.0 | - | |
|
| 0.9558 | 38750 | 0.0 | - | |
|
| 0.9571 | 38800 | 0.0 | - | |
|
| 0.9583 | 38850 | 0.0 | - | |
|
| 0.9595 | 38900 | 0.0 | - | |
|
| 0.9608 | 38950 | 0.0 | - | |
|
| 0.9620 | 39000 | 0.0 | - | |
|
| 0.9632 | 39050 | 0.0 | - | |
|
| 0.9645 | 39100 | 0.0 | - | |
|
| 0.9657 | 39150 | 0.0 | - | |
|
| 0.9669 | 39200 | 0.0 | - | |
|
| 0.9682 | 39250 | 0.0 | - | |
|
| 0.9694 | 39300 | 0.0 | - | |
|
| 0.9706 | 39350 | 0.0 | - | |
|
| 0.9719 | 39400 | 0.0 | - | |
|
| 0.9731 | 39450 | 0.0 | - | |
|
| 0.9743 | 39500 | 0.0 | - | |
|
| 0.9756 | 39550 | 0.0 | - | |
|
| 0.9768 | 39600 | 0.0 | - | |
|
| 0.9780 | 39650 | 0.0 | - | |
|
| 0.9793 | 39700 | 0.0 | - | |
|
| 0.9805 | 39750 | 0.0 | - | |
|
| 0.9817 | 39800 | 0.0 | - | |
|
| 0.9830 | 39850 | 0.0 | - | |
|
| 0.9842 | 39900 | 0.0 | - | |
|
| 0.9854 | 39950 | 0.0 | - | |
|
| 0.9867 | 40000 | 0.0 | - | |
|
| 0.9879 | 40050 | 0.0 | - | |
|
| 0.9891 | 40100 | 0.0 | - | |
|
| 0.9904 | 40150 | 0.0 | - | |
|
| 0.9916 | 40200 | 0.0 | - | |
|
| 0.9928 | 40250 | 0.0 | - | |
|
| 0.9941 | 40300 | 0.0 | - | |
|
| 0.9953 | 40350 | 0.0 | - | |
|
| 0.9965 | 40400 | 0.0 | - | |
|
| 0.9978 | 40450 | 0.0 | - | |
|
| 0.9990 | 40500 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 2.5.1 |
|
- Transformers: 4.38.1 |
|
- PyTorch: 2.1.0+cu121 |
|
- Datasets: 2.18.0 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |