whisper-small-sc / README.md
janaab's picture
Update README.md
f119fb2 verified
metadata
base_model: openai/whisper-small
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: whisper-small-sc
    results: []
datasets:
  - janaab/supreme-court-speech
language:
  - en
pipeline_tag: automatic-speech-recognition

whisper-small-sc

This model is a fine-tuned version of openai/whisper-small on janaab/supreme-court-speech dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2992
  • Wer Ortho: 10.7269
  • Wer: 10.2317

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.2799 0.7704 250 0.2614 12.1130 11.6261
0.1454 1.5408 500 0.2367 11.0523 10.6016
0.072 2.3112 750 0.2428 10.6736 10.2154
0.0488 3.0817 1000 0.2638 10.8335 10.3623
0.0294 3.8521 1250 0.2689 11.2821 10.7793
0.012 4.6225 1500 0.2992 10.7269 10.2317

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1