jason1i's picture
update model card README.md
c2aae92
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results: []

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0908
  • Accuracy: 0.84

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1531 1.0 113 2.1667 0.41
1.6622 2.0 226 1.6138 0.63
1.3112 3.0 339 1.2047 0.7
0.9374 4.0 452 0.9595 0.73
0.5475 5.0 565 0.7239 0.82
0.4845 6.0 678 0.7406 0.75
0.2489 7.0 791 0.6838 0.78
0.3272 8.0 904 0.8447 0.79
0.2244 9.0 1017 0.7184 0.81
0.0353 10.0 1130 0.8800 0.79
0.0201 11.0 1243 0.8800 0.83
0.0079 12.0 1356 0.8207 0.83
0.004 13.0 1469 0.9218 0.82
0.003 14.0 1582 1.0004 0.83
0.0024 15.0 1695 0.9446 0.84
0.0021 16.0 1808 0.9802 0.85
0.0018 17.0 1921 0.9766 0.84
0.0017 18.0 2034 1.0597 0.84
0.0014 19.0 2147 0.9541 0.84
0.0012 20.0 2260 1.0408 0.84
0.0011 21.0 2373 1.0364 0.84
0.001 22.0 2486 1.0993 0.84
0.001 23.0 2599 1.0620 0.84
0.0009 24.0 2712 1.0193 0.83
0.0009 25.0 2825 1.0164 0.83
0.0009 26.0 2938 1.0293 0.84
0.0008 27.0 3051 1.0478 0.84
0.0008 28.0 3164 1.0727 0.84
0.0008 29.0 3277 1.0773 0.84
0.0008 30.0 3390 1.0908 0.84

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3