jayanthspratap's picture
End of training
ea3005b verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-base-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-base-patch4-window8-256
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7241379310344828

swinv2-base-patch4-window8-256

This model is a fine-tuned version of microsoft/swinv2-base-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6211
  • Accuracy: 0.7241

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5428 0.9912 28 0.6211 0.7241
0.6494 1.9823 56 0.6130 0.7241
0.5752 2.9735 84 0.6846 0.7241
0.7165 4.0 113 0.9642 0.7241
0.5699 4.9912 141 0.6072 0.7241
0.5517 5.9823 169 0.6231 0.7241
0.5268 6.9735 197 0.6098 0.7241
0.672 8.0 226 0.5891 0.7241
0.5448 8.9912 254 0.6023 0.7241
0.555 9.9823 282 0.5917 0.7241
0.5818 10.9735 310 0.5940 0.7241
0.6556 12.0 339 0.5966 0.7241
0.716 12.9912 367 0.5904 0.7241
0.6104 13.9823 395 0.5938 0.7241
0.5046 14.9735 423 0.5921 0.7241
0.5871 16.0 452 0.6027 0.7241
0.5222 16.9912 480 0.5921 0.7241
0.5511 17.9823 508 0.5948 0.7241
0.6394 18.9735 536 0.5969 0.7241
0.566 20.0 565 0.6005 0.7241
0.6032 20.9912 593 0.5968 0.7241
0.4824 21.9823 621 0.5934 0.7241
0.4975 22.9735 649 0.5979 0.7241
0.4976 24.0 678 0.6034 0.7241
0.5355 24.9912 706 0.6033 0.7241
0.4323 25.9823 734 0.6015 0.7241
0.5579 26.9735 762 0.6043 0.7241
0.5639 28.0 791 0.6023 0.7241
0.5595 28.9912 819 0.5996 0.7241
0.4372 29.7345 840 0.5995 0.7241

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1