whisper-small-hi / README.md
jaype's picture
End of training
6278e5d verified
metadata
language:
  - hi
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: jpwhisperfinetune
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: hi
          split: None
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 32.29069669008719

jpwhisperfinetune

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4688
  • Wer: 32.2907

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0924 2.4450 1000 0.2989 35.0800
0.0227 4.8900 2000 0.3584 33.6578
0.0018 7.3350 3000 0.4135 32.3161
0.0003 9.7800 4000 0.4539 32.3034
0.0002 12.2249 5000 0.4688 32.2907

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1