whisper-small-ig / README.md
jboat's picture
End of training
292b2e3 verified
|
raw
history blame
2.38 kB
metadata
language:
  - ig
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Small Igbo
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs-jboat
          type: google/fleurs
          config: ig_ng
          split: test
          args: ig_ng
        metrics:
          - name: Wer
            type: wer
            value: 44.01272438082254

Whisper Small Igbo

This model is a fine-tuned version of openai/whisper-small on the google/fleurs-jboat dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0619
  • Wer Ortho: 47.8937
  • Wer: 44.0127

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.3161 2.6455 500 0.7413 50.2340 46.1448
0.0421 5.2910 1000 0.8582 49.0269 44.8004
0.0168 7.9365 1500 0.9246 47.6351 43.5204
0.0075 10.5820 2000 0.9912 47.7541 43.3121
0.0051 13.2275 2500 1.0277 47.7377 43.3954
0.0067 15.8730 3000 1.0354 47.6638 43.1644
0.0041 18.5185 3500 1.0722 48.3864 44.1112
0.0028 21.1640 4000 1.0619 47.8937 44.0127

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1