whisper-small-ig / README.md
jboat's picture
End of training
1267edb verified
|
raw
history blame
2.42 kB
metadata
language:
  - ig
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Small Igbo
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17
          type: mozilla-foundation/common_voice_17_0
          config: ig
          split: test
          args: ig
        metrics:
          - name: Wer
            type: wer
            value: 286.11111111111114

Whisper Small Igbo

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17 dataset. It achieves the following results on the evaluation set:

  • Loss: 8.1870
  • Wer Ortho: 294.2857
  • Wer: 286.1111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0 500.0 500 3.2906 97.1429 88.8889
0.0 1000.0 1000 3.6536 91.4286 86.1111
0.0 1500.0 1500 4.3865 94.2857 91.6667
0.0 2000.0 2000 5.4348 102.8571 100.0
0.0 2500.0 2500 5.9169 94.2857 94.4444
0.0 3000.0 3000 6.6346 288.5714 277.7778
0.0 3500.0 3500 7.4267 297.1429 288.8889
0.0 4000.0 4000 8.1870 294.2857 286.1111

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1