llama381binstruct_summarize_short_merged
This model is a fine-tuned version of NousResearch/Meta-Llama-3.1-8B-Instruct on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 2.7380
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 30
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5177 | 2.5 | 25 | 1.7211 |
0.432 | 5.0 | 50 | 1.8956 |
0.1093 | 7.5 | 75 | 2.5105 |
0.0237 | 10.0 | 100 | 2.4890 |
0.0133 | 12.5 | 125 | 2.5161 |
0.0039 | 15.0 | 150 | 2.5213 |
0.0049 | 17.5 | 175 | 2.5015 |
0.0025 | 20.0 | 200 | 2.6358 |
0.0013 | 22.5 | 225 | 2.7310 |
0.0047 | 25.0 | 250 | 2.5421 |
0.0013 | 27.5 | 275 | 2.6042 |
0.0009 | 30.0 | 300 | 2.6729 |
0.0008 | 32.5 | 325 | 2.6970 |
0.0007 | 35.0 | 350 | 2.7104 |
0.0007 | 37.5 | 375 | 2.7201 |
0.0006 | 40.0 | 400 | 2.7271 |
0.0006 | 42.5 | 425 | 2.7318 |
0.0006 | 45.0 | 450 | 2.7348 |
0.0006 | 47.5 | 475 | 2.7373 |
0.0006 | 50.0 | 500 | 2.7380 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.20.1
- Downloads last month
- 6
Model tree for jcbthnflrs/llama381binstruct_summarize_short
Base model
NousResearch/Meta-Llama-3.1-8B-Instruct