SentenceTransformer based on dunzhang/stella_en_400M_v5
This is a sentence-transformers model finetuned from dunzhang/stella_en_400M_v5 on the obliqa_embed_rand dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: dunzhang/stella_en_400M_v5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jebish7/stell-400-obliqa-half")
# Run inference
sentences = [
'Can the ADGM clarify the specific criteria that must be met for an Authorised Person to receive approval to use the Standardised Approach or Alternative Standardised Approach for calculating the Operational Risk Capital Requirement?',
'DocumentID: 13 | PassageID: APP7.Guidance.1. | Passage: Section 6.11 of these Rules provides that an Authorised Person in Categories 1, 2, 3A and 5 must use the Basic Indicator Approach to calculate its Operational Risk Capital Requirement, unless the firm has approval from the Regulator to use the Standardised Approach or Alternative Standardised Approach. In this App7:\na.\tthe Basic Indicator Approach is prescribed in Section A7.1;\nb.\tthe Standardised Approach is prescribed in Section A7.2; and\nc.\tthe Alternative Standardised Approach is prescribed in Section A7.3.',
"DocumentID: 7 | PassageID: 8.8.12.(2) | Passage: The Authorised Person's annual report on its Controllers must include:\n(a)\tthe name of each Controller; and\n(b)\tthe current holding of each Controller, expressed as a percentage.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
obliqa_embed_rand
- Dataset: obliqa_embed_rand at 8fe381e
- Size: 66,883 training samples
- Columns:
question
,details
, andlabel
- Approximate statistics based on the first 1000 samples:
question details label type string string int details - min: 16 tokens
- mean: 34.84 tokens
- max: 64 tokens
- min: 16 tokens
- mean: 96.9 tokens
- max: 512 tokens
- 0: ~68.20%
- 1: ~31.80%
- Samples:
question details label Does the FSRA provide any workshops, training sessions, or additional support to ensure that our Competent Persons are fully equipped to comply with the PRMS as incorporated in Chapter 12 of MKT?
DocumentID: 31
PassageID: 15) Are there specific ADGM guidelines on how to effectively monitor transactions to detect those that are not consistent with a Relevant Person’s knowledge of the customer?
DocumentID: 13
PassageID: APP6.A6.8.14 In assessing a Person's investment portfolio for Professional Client status, what portfolio composition and size are generally considered to demonstrate sufficient sophistication and risk understanding?
DocumentID: 3
PassageID: 2.6.2.(a) - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
obliqa_embed_rand
- Dataset: obliqa_embed_rand at 8fe381e
- Size: 66,883 evaluation samples
- Columns:
question
,details
, andlabel
- Approximate statistics based on the first 1000 samples:
question details label type string string int details - min: 18 tokens
- mean: 34.72 tokens
- max: 70 tokens
- min: 17 tokens
- mean: 98.5 tokens
- max: 438 tokens
- 0: ~64.40%
- 1: ~35.60%
- Samples:
question details label What are the specific steps and processes that our company must follow to comply with the FSRA’s AML/CFT framework when engaging in Digital Securities-based financial services activities?
DocumentID: 3
PassageID: 3.8.22.Guidance Could you clarify the frequency and triggers that would mandate the periodic reassessment of a customer's risk profile under Rule 8.6.1(e)?
DocumentID: 11
PassageID: 9.4.1 What is the approach adopted by the FSRA for the supervision of Authorised Persons as detailed in Chapter 3 of the GPM?
DocumentID: 14
PassageID: Part 3.Chapter 2.11.(5) - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.0516 | 200 | 1.8586 | 1.3987 |
0.1032 | 400 | 1.2486 | 1.2246 |
0.1548 | 600 | 1.148 | 1.0623 |
0.2065 | 800 | 1.0538 | 0.9753 |
0.2581 | 1000 | 0.9704 | 0.8999 |
0.3097 | 1200 | 0.8924 | 0.8423 |
0.3613 | 1400 | 0.8501 | 0.8419 |
0.4129 | 1600 | 0.8532 | 0.7894 |
0.4645 | 1800 | 0.7663 | 0.7808 |
0.5161 | 2000 | 0.7365 | 0.7420 |
0.5677 | 2200 | 0.7133 | 0.7265 |
0.6194 | 2400 | 0.7121 | 0.6769 |
0.6710 | 2600 | 0.6676 | 0.6510 |
0.7226 | 2800 | 0.6405 | 0.6161 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jebish7/stell-400-obliqa-half
Base model
dunzhang/stella_en_400M_v5