Edit model card

SentenceTransformer based on dunzhang/stella_en_400M_v5

This is a sentence-transformers model finetuned from dunzhang/stella_en_400M_v5 on the obliqa_embed_rand dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: dunzhang/stella_en_400M_v5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 1024, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("jebish7/stell-400-obliqa-half")
# Run inference
sentences = [
    'Can the ADGM clarify the specific criteria that must be met for an Authorised Person to receive approval to use the Standardised Approach or Alternative Standardised Approach for calculating the Operational Risk Capital Requirement?',
    'DocumentID: 13 | PassageID: APP7.Guidance.1. | Passage: Section 6.11 of these Rules provides that an Authorised Person in Categories 1, 2, 3A and 5 must use the Basic Indicator Approach to calculate its Operational Risk Capital Requirement, unless the firm has approval from the Regulator to use the Standardised Approach or Alternative Standardised Approach. In this App7:\na.\tthe Basic Indicator Approach is prescribed in Section A7.1;\nb.\tthe Standardised Approach is prescribed in Section A7.2; and\nc.\tthe Alternative Standardised Approach is prescribed in Section A7.3.',
    "DocumentID: 7 | PassageID: 8.8.12.(2) | Passage: The Authorised Person's annual report on its Controllers must include:\n(a)\tthe name of each Controller; and\n(b)\tthe current holding of each Controller, expressed as a percentage.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

obliqa_embed_rand

  • Dataset: obliqa_embed_rand at 8fe381e
  • Size: 66,883 training samples
  • Columns: question, details, and label
  • Approximate statistics based on the first 1000 samples:
    question details label
    type string string int
    details
    • min: 16 tokens
    • mean: 34.84 tokens
    • max: 64 tokens
    • min: 16 tokens
    • mean: 96.9 tokens
    • max: 512 tokens
    • 0: ~68.20%
    • 1: ~31.80%
  • Samples:
    question details label
    Does the FSRA provide any workshops, training sessions, or additional support to ensure that our Competent Persons are fully equipped to comply with the PRMS as incorporated in Chapter 12 of MKT? DocumentID: 31 PassageID: 15)
    Are there specific ADGM guidelines on how to effectively monitor transactions to detect those that are not consistent with a Relevant Person’s knowledge of the customer? DocumentID: 13 PassageID: APP6.A6.8.14
    In assessing a Person's investment portfolio for Professional Client status, what portfolio composition and size are generally considered to demonstrate sufficient sophistication and risk understanding? DocumentID: 3 PassageID: 2.6.2.(a)
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

obliqa_embed_rand

  • Dataset: obliqa_embed_rand at 8fe381e
  • Size: 66,883 evaluation samples
  • Columns: question, details, and label
  • Approximate statistics based on the first 1000 samples:
    question details label
    type string string int
    details
    • min: 18 tokens
    • mean: 34.72 tokens
    • max: 70 tokens
    • min: 17 tokens
    • mean: 98.5 tokens
    • max: 438 tokens
    • 0: ~64.40%
    • 1: ~35.60%
  • Samples:
    question details label
    What are the specific steps and processes that our company must follow to comply with the FSRA’s AML/CFT framework when engaging in Digital Securities-based financial services activities? DocumentID: 3 PassageID: 3.8.22.Guidance
    Could you clarify the frequency and triggers that would mandate the periodic reassessment of a customer's risk profile under Rule 8.6.1(e)? DocumentID: 11 PassageID: 9.4.1
    What is the approach adopted by the FSRA for the supervision of Authorised Persons as detailed in Chapter 3 of the GPM? DocumentID: 14 PassageID: Part 3.Chapter 2.11.(5)
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss
0.0516 200 1.8586 1.3987
0.1032 400 1.2486 1.2246
0.1548 600 1.148 1.0623
0.2065 800 1.0538 0.9753
0.2581 1000 0.9704 0.8999
0.3097 1200 0.8924 0.8423
0.3613 1400 0.8501 0.8419
0.4129 1600 0.8532 0.7894
0.4645 1800 0.7663 0.7808
0.5161 2000 0.7365 0.7420
0.5677 2200 0.7133 0.7265
0.6194 2400 0.7121 0.6769
0.6710 2600 0.6676 0.6510
0.7226 2800 0.6405 0.6161

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.1.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
0
Safetensors
Model size
434M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jebish7/stell-400-obliqa-half

Finetuned
(3)
this model