Mixtral_ether / README.md
jeduardogruiz's picture
Update README.md
1ede5ff verified
|
raw
history blame
8.41 kB
metadata
language:
  - fr
  - it
  - de
  - es
  - en
license: apache-2.0
inference:
  parameters:
    temperature: 0.5
widget:
  - messages:
      - role: user
        content: What is your favorite condiment?
datasets:
  - nyu-visionx/Cambrian-10M
  - Salesforce/xlam-function-calling-60k
  - proj-persona/PersonaHub
  - HuggingFaceFW/fineweb
  - nvidia/HelpSteer2
  - HuggingFaceFW/fineweb-edu
metrics:
  - bertscore
  - accuracy
library_name: keras
pipeline_tag: text-generation
tags:
  - music
  - code
  - finance

Model Card for Mixtral-8x7B

Tokenization with mistral-common

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
 
mistral_models_path = "MISTRAL_MODELS_PATH"
 
tokenizer = MistralTokenizer.v1()
 
completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")])
 
tokens = tokenizer.encode_chat_completion(completion_request).tokens

Inference with mistral_inference

from mistral_inference.model import Transformer
from mistral_inference.generate import generate

model = Transformer.from_folder(mistral_models_path)
out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)

result = tokenizer.decode(out_tokens[0])

print(result)

Inference with hugging face transformers

from transformers import AutoModelForCausalLM
 
model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
model.to("cuda")
 
generated_ids = model.generate(tokens, max_new_tokens=1000, do_sample=True)

# decode with mistral tokenizer
result = tokenizer.decode(generated_ids[0].tolist())
print(result)

PRs to correct the transformers tokenizer so that it gives 1-to-1 the same results as the mistral-common reference implementation are very welcome!


The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mixtral-8x7B outperforms Llama 2 70B on most benchmarks we tested.

For full details of this model please read our release blog post.

Warning

This repo contains weights that are compatible with vLLM serving of the model as well as Hugging Face transformers library. It is based on the original Mixtral torrent release, but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF.

Instruction format

This format must be strictly respected, otherwise the model will generate sub-optimal outputs.

The template used to build a prompt for the Instruct model is defined as follows:

<s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST]

Note that <s> and </s> are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings.

As reference, here is the pseudo-code used to tokenize instructions during fine-tuning:

def tokenize(text):
    return tok.encode(text, add_special_tokens=False)

[BOS_ID] + 
tokenize("[INST]") + tokenize(USER_MESSAGE_1) + tokenize("[/INST]") +
tokenize(BOT_MESSAGE_1) + [EOS_ID] +
…
tokenize("[INST]") + tokenize(USER_MESSAGE_N) + tokenize("[/INST]") +
tokenize(BOT_MESSAGE_N) + [EOS_ID]

In the pseudo-code above, note that the tokenize method should not add a BOS or EOS token automatically, but should add a prefix space.

In the Transformers library, one can use chat templates which make sure the right format is applied.

Run the model

from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")

messages = [
    {"role": "user", "content": "What is your favourite condiment?"},
    {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
    {"role": "user", "content": "Do you have mayonnaise recipes?"}
]

inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")

outputs = model.generate(inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem:

In half-precision

Note float16 precision only works on GPU devices

Click to expand
+ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)

+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")

messages = [
    {"role": "user", "content": "What is your favourite condiment?"},
    {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
    {"role": "user", "content": "Do you have mayonnaise recipes?"}
]

input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")

outputs = model.generate(input_ids, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Lower precision using (8-bit & 4-bit) using bitsandbytes

Click to expand
+ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)

+ model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, device_map="auto")

text = "Hello my name is"
messages = [
    {"role": "user", "content": "What is your favourite condiment?"},
    {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
    {"role": "user", "content": "Do you have mayonnaise recipes?"}
]

input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")

outputs = model.generate(input_ids, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Load the model with Flash Attention 2

Click to expand
+ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)

+ model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True, device_map="auto")

messages = [
    {"role": "user", "content": "What is your favourite condiment?"},
    {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
    {"role": "user", "content": "Do you have mayonnaise recipes?"}
]

input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")

outputs = model.generate(input_ids, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Limitations

The Mixtral-8x7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.

The Mistral AI Team

Eduardo ruiz