File size: 70,275 Bytes
b2f3503 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 |
---
base_model: Snowflake/snowflake-arctic-embed-l
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3430
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What are some illustrative cases that show the implementation of
the AI Bill of Rights?
sentences:
- "SECTION TITLE\nAPPENDIX\nListening to the American People \nThe White House Office\
\ of Science and Technology Policy (OSTP) led a yearlong process to seek and distill\
\ \ninput from people across the country – from impacted communities to industry\
\ stakeholders to \ntechnology developers to other experts across fields and sectors,\
\ as well as policymakers across the Federal \ngovernment – on the issue of algorithmic\
\ and data-driven harms and potential remedies. Through panel \ndiscussions, public\
\ listening sessions, private meetings, a formal request for information, and\
\ input to a \npublicly accessible and widely-publicized email address, people\
\ across the United States spoke up about \nboth the promises and potential harms\
\ of these technologies, and played a central role in shaping the \nBlueprint\
\ for an AI Bill of Rights. \nPanel Discussions to Inform the Blueprint for An\
\ AI Bill of Rights \nOSTP co-hosted a series of six panel discussions in collaboration\
\ with the Center for American Progress,"
- "existing human performance considered as a performance baseline for the algorithm\
\ to meet pre-deployment, \nand as a lifecycle minimum performance standard. Decision\
\ possibilities resulting from performance testing \nshould include the possibility\
\ of not deploying the system. \nRisk identification and mitigation. Before deployment,\
\ and in a proactive and ongoing manner, poten\ntial risks of the automated system\
\ should be identified and mitigated. Identified risks should focus on the \n\
potential for meaningful impact on people’s rights, opportunities, or access and\
\ include those to impacted \ncommunities that may not be direct users of the\
\ automated system, risks resulting from purposeful misuse of \nthe system, and\
\ other concerns identified via the consultation process. Assessment and, where\
\ possible, mea\nsurement of the impact of risks should be included and balanced\
\ such that high impact risks receive attention"
- "confidence that their rights, opportunities, and access as well as their expectations\
\ about technologies are respected. \n3\nHOW THESE PRINCIPLES CAN MOVE INTO PRACTICE:\
\ \nThis section provides real-life examples of how these guiding principles can\
\ become reality, through laws, policies, and practices. \nIt describes practical\
\ technical and sociotechnical approaches to protecting rights, opportunities,\
\ and access. \nThe examples provided are not critiques or endorsements, but rather\
\ are offered as illustrative cases to help \nprovide a concrete vision for actualizing\
\ the Blueprint for an AI Bill of Rights. Effectively implementing these \nprocesses\
\ require the cooperation of and collaboration among industry, civil society,\
\ researchers, policymakers, \ntechnologists, and the public. \n14"
- source_sentence: What are the potential impacts of automated systems on data privacy?
sentences:
- "https://arxiv.org/pdf/2305.17493v2 \nSmith, A. et al. (2023) Hallucination or\
\ Confabulation? Neuroanatomy as metaphor in Large Language \nModels. PLOS Digital\
\ Health. \nhttps://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000388\
\ \nSoice, E. et al. (2023) Can large language models democratize access to dual-use\
\ biotechnology? arXiv. \nhttps://arxiv.org/abs/2306.03809 \nSolaiman, I. et al.\
\ (2023) The Gradient of Generative AI Release: Methods and Considerations. arXiv.\
\ \nhttps://arxiv.org/abs/2302.04844 \nStaab, R. et al. (2023) Beyond Memorization:\
\ Violating Privacy via Inference With Large Language \nModels. arXiv. https://arxiv.org/pdf/2310.07298\
\ \nStanford, S. et al. (2023) Whose Opinions Do Language Models Reflect? arXiv.\
\ \nhttps://arxiv.org/pdf/2303.17548 \nStrubell, E. et al. (2019) Energy and Policy\
\ Considerations for Deep Learning in NLP. arXiv. \nhttps://arxiv.org/pdf/1906.02243\
\ \nThe White House (2016) Circular No. A-130, Managing Information as a Strategic\
\ Resource."
- "and data that are considered sensitive are understood to change over time based\
\ on societal norms and context. \n36"
- "yet foreseeable, uses or impacts of automated systems. You should be \nprotected\
\ from inappropriate or irrelevant data use in the design, de\nvelopment, and\
\ deployment of automated systems, and from the \ncompounded harm of its reuse.\
\ Independent evaluation and report\ning that confirms that the system is safe\
\ and effective, including re\nporting of steps taken to mitigate potential harms,\
\ should be per\nformed and the results made public whenever possible. \n15"
- source_sentence: What is the AI Bill of Rights?
sentences:
- "BLUEPRINT FOR AN \nAI BILL OF \nRIGHTS \nMAKING AUTOMATED \nSYSTEMS WORK FOR\
\ \nTHE AMERICAN PEOPLE \nOCTOBER 2022"
- "APPENDIX\n•\nJulia Simon-Mishel, Supervising Attorney, Philadelphia Legal Assistance\n\
•\nDr. Zachary Mahafza, Research & Data Analyst, Southern Poverty Law Center\n\
•\nJ. Khadijah Abdurahman, Tech Impact Network Research Fellow, AI Now Institute,\
\ UCLA C2I1, and\nUWA Law School\nPanelists separately described the increasing\
\ scope of technology use in providing for social welfare, including \nin fraud\
\ detection, digital ID systems, and other methods focused on improving efficiency\
\ and reducing cost. \nHowever, various panelists individually cautioned that\
\ these systems may reduce burden for government \nagencies by increasing the\
\ burden and agency of people using and interacting with these technologies. \n\
Additionally, these systems can produce feedback loops and compounded harm, collecting\
\ data from \ncommunities and using it to reinforce inequality. Various panelists\
\ suggested that these harms could be \nmitigated by ensuring community input\
\ at the beginning of the design process, providing ways to opt out of"
- "safe, secure, and resilient; (e) understandable; (f ) responsible and traceable;\
\ (g) regularly monitored; (h) transpar-\nent; and, (i) accountable. The Blueprint\
\ for an AI Bill of Rights is consistent with the Executive Order. \nAffected\
\ agencies across the federal government have released AI use case inventories13\
\ and are implementing \nplans to bring those AI systems into compliance with\
\ the Executive Order or retire them. \nThe law and policy landscape for motor\
\ vehicles shows that strong safety regulations—and \nmeasures to address harms\
\ when they occur—can enhance innovation in the context of com-\nplex technologies.\
\ Cars, like automated digital systems, comprise a complex collection of components.\
\ \nThe National Highway Traffic Safety Administration,14 through its rigorous\
\ standards and independent \nevaluation, helps make sure vehicles on our roads\
\ are safe without limiting manufacturers’ ability to \ninnovate.15 At the same\
\ time, rules of the road are implemented locally to impose contextually appropriate"
- source_sentence: What are the best practices for benchmarking AI system security
and resilience?
sentences:
- "NOTICE & \nEXPLANATION \nWHAT SHOULD BE EXPECTED OF AUTOMATED SYSTEMS\nThe expectations\
\ for automated systems are meant to serve as a blueprint for the development\
\ of additional \ntechnical standards and practices that are tailored for particular\
\ sectors and contexts. \nAn automated system should provide demonstrably clear,\
\ timely, understandable, and accessible notice of use, and \nexplanations as\
\ to how and why a decision was made or an action was taken by the system. These\
\ expectations are \nexplained below. \nProvide clear, timely, understandable,\
\ and accessible notice of use and explanations \nGenerally accessible plain\
\ language documentation. The entity responsible for using the automated \nsystem\
\ should ensure that documentation describing the overall system (including any\
\ human components) is \npublic and easy to find. The documentation should describe,\
\ in plain language, how the system works and how"
- "content performance and impact, and work in collaboration with AI Actors \nexperienced\
\ in user research and experience. \nHuman-AI Configuration \nMG-4.1-004 Implement\
\ active learning techniques to identify instances where the model fails \nor\
\ produces unexpected outputs. \nConfabulation \nMG-4.1-005 \nShare transparency\
\ reports with internal and external stakeholders that detail \nsteps taken to\
\ update the GAI system to enhance transparency and \naccountability. \nHuman-AI\
\ Configuration; Harmful \nBias and Homogenization \nMG-4.1-006 \nTrack dataset\
\ modifications for provenance by monitoring data deletions, \nrectification requests,\
\ and other changes that may impact the verifiability of \ncontent origins. \n\
Information Integrity"
- "33 \nMEASURE 2.7: AI system security and resilience – as identified in the MAP\
\ function – are evaluated and documented. \nAction ID \nSuggested Action \nGAI\
\ Risks \nMS-2.7-001 \nApply established security measures to: Assess likelihood\
\ and magnitude of \nvulnerabilities and threats such as backdoors, compromised\
\ dependencies, data \nbreaches, eavesdropping, man-in-the-middle attacks, reverse\
\ engineering, \nautonomous agents, model theft or exposure of model weights,\
\ AI inference, \nbypass, extraction, and other baseline security concerns. \n\
Data Privacy; Information Integrity; \nInformation Security; Value Chain \nand\
\ Component Integration \nMS-2.7-002 \nBenchmark GAI system security and resilience\
\ related to content provenance \nagainst industry standards and best practices.\
\ Compare GAI system security \nfeatures and content provenance methods against\
\ industry state-of-the-art. \nInformation Integrity; Information \nSecurity \n\
MS-2.7-003 \nConduct user surveys to gather user satisfaction with the AI-generated\
\ content"
- source_sentence: How should risks or trustworthiness characteristics that cannot
be measured be documented?
sentences:
- "MEASURE 1.1: Approaches and metrics for measurement of AI risks enumerated during\
\ the MAP function are selected for \nimplementation starting with the most significant\
\ AI risks. The risks or trustworthiness characteristics that will not – or cannot\
\ – be \nmeasured are properly documented. \nAction ID \nSuggested Action \nGAI\
\ Risks \nMS-1.1-001 Employ methods to trace the origin and modifications of digital\
\ content. \nInformation Integrity \nMS-1.1-002 \nIntegrate tools designed to\
\ analyze content provenance and detect data \nanomalies, verify the authenticity\
\ of digital signatures, and identify patterns \nassociated with misinformation\
\ or manipulation. \nInformation Integrity \nMS-1.1-003 \nDisaggregate evaluation\
\ metrics by demographic factors to identify any \ndiscrepancies in how content\
\ provenance mechanisms work across diverse \npopulations. \nInformation Integrity;\
\ Harmful \nBias and Homogenization \nMS-1.1-004 Develop a suite of metrics to\
\ evaluate structured public feedback exercises"
- "AI technology can produce varied outputs in multiple modalities and present many\
\ classes of user \ninterfaces. This leads to a broader set of AI Actors interacting\
\ with GAI systems for widely differing \napplications and contexts of use. These\
\ can include data labeling and preparation, development of GAI \nmodels, content\
\ moderation, code generation and review, text generation and editing, image and\
\ video \ngeneration, summarization, search, and chat. These activities can take\
\ place within organizational \nsettings or in the public domain. \nOrganizations\
\ can restrict AI applications that cause harm, exceed stated risk tolerances,\
\ or that conflict \nwith their tolerances or values. Governance tools and protocols\
\ that are applied to other types of AI \nsystems can be applied to GAI systems.\
\ These plans and actions include: \n• Accessibility and reasonable \naccommodations\
\ \n• AI actor credentials and qualifications \n• Alignment to organizational\
\ values \n• Auditing and assessment \n• Change-management controls"
- "existing human performance considered as a performance baseline for the algorithm\
\ to meet pre-deployment, \nand as a lifecycle minimum performance standard. Decision\
\ possibilities resulting from performance testing \nshould include the possibility\
\ of not deploying the system. \nRisk identification and mitigation. Before deployment,\
\ and in a proactive and ongoing manner, poten\ntial risks of the automated system\
\ should be identified and mitigated. Identified risks should focus on the \n\
potential for meaningful impact on people’s rights, opportunities, or access and\
\ include those to impacted \ncommunities that may not be direct users of the\
\ automated system, risks resulting from purposeful misuse of \nthe system, and\
\ other concerns identified via the consultation process. Assessment and, where\
\ possible, mea\nsurement of the impact of risks should be included and balanced\
\ such that high impact risks receive attention"
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.2807017543859649
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4649122807017544
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5350877192982456
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7192982456140351
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2807017543859649
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15497076023391812
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10701754385964912
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0719298245614035
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2807017543859649
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4649122807017544
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5350877192982456
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7192982456140351
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4797086283187805
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.40644667223614606
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.423567506926962
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.2807017543859649
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.4649122807017544
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.5350877192982456
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7192982456140351
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.2807017543859649
name: Dot Precision@1
- type: dot_precision@3
value: 0.15497076023391812
name: Dot Precision@3
- type: dot_precision@5
value: 0.10701754385964912
name: Dot Precision@5
- type: dot_precision@10
value: 0.0719298245614035
name: Dot Precision@10
- type: dot_recall@1
value: 0.2807017543859649
name: Dot Recall@1
- type: dot_recall@3
value: 0.4649122807017544
name: Dot Recall@3
- type: dot_recall@5
value: 0.5350877192982456
name: Dot Recall@5
- type: dot_recall@10
value: 0.7192982456140351
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4797086283187805
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.40644667223614606
name: Dot Mrr@10
- type: dot_map@100
value: 0.423567506926962
name: Dot Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision 9a9e5834d2e89cdd8bb72b64111dde496e4fe78c -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jeevanions/finetuned_arctic-embedd-l")
# Run inference
sentences = [
'How should risks or trustworthiness characteristics that cannot be measured be documented?',
'MEASURE 1.1: Approaches and metrics for measurement of AI risks enumerated during the MAP function are selected for \nimplementation starting with the most significant AI risks. The risks or trustworthiness characteristics that will not – or cannot – be \nmeasured are properly documented. \nAction ID \nSuggested Action \nGAI Risks \nMS-1.1-001 Employ methods to trace the origin and modifications of digital content. \nInformation Integrity \nMS-1.1-002 \nIntegrate tools designed to analyze content provenance and detect data \nanomalies, verify the authenticity of digital signatures, and identify patterns \nassociated with misinformation or manipulation. \nInformation Integrity \nMS-1.1-003 \nDisaggregate evaluation metrics by demographic factors to identify any \ndiscrepancies in how content provenance mechanisms work across diverse \npopulations. \nInformation Integrity; Harmful \nBias and Homogenization \nMS-1.1-004 Develop a suite of metrics to evaluate structured public feedback exercises',
'existing human performance considered as a performance baseline for the algorithm to meet pre-deployment, \nand as a lifecycle minimum performance standard. Decision possibilities resulting from performance testing \nshould include the possibility of not deploying the system. \nRisk identification and mitigation. Before deployment, and in a proactive and ongoing manner, poten\xad\ntial risks of the automated system should be identified and mitigated. Identified risks should focus on the \npotential for meaningful impact on people’s rights, opportunities, or access and include those to impacted \ncommunities that may not be direct users of the automated system, risks resulting from purposeful misuse of \nthe system, and other concerns identified via the consultation process. Assessment and, where possible, mea\xad\nsurement of the impact of risks should be included and balanced such that high impact risks receive attention',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.2807 |
| cosine_accuracy@3 | 0.4649 |
| cosine_accuracy@5 | 0.5351 |
| cosine_accuracy@10 | 0.7193 |
| cosine_precision@1 | 0.2807 |
| cosine_precision@3 | 0.155 |
| cosine_precision@5 | 0.107 |
| cosine_precision@10 | 0.0719 |
| cosine_recall@1 | 0.2807 |
| cosine_recall@3 | 0.4649 |
| cosine_recall@5 | 0.5351 |
| cosine_recall@10 | 0.7193 |
| cosine_ndcg@10 | 0.4797 |
| cosine_mrr@10 | 0.4064 |
| **cosine_map@100** | **0.4236** |
| dot_accuracy@1 | 0.2807 |
| dot_accuracy@3 | 0.4649 |
| dot_accuracy@5 | 0.5351 |
| dot_accuracy@10 | 0.7193 |
| dot_precision@1 | 0.2807 |
| dot_precision@3 | 0.155 |
| dot_precision@5 | 0.107 |
| dot_precision@10 | 0.0719 |
| dot_recall@1 | 0.2807 |
| dot_recall@3 | 0.4649 |
| dot_recall@5 | 0.5351 |
| dot_recall@10 | 0.7193 |
| dot_ndcg@10 | 0.4797 |
| dot_mrr@10 | 0.4064 |
| dot_map@100 | 0.4236 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 3,430 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 17.71 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 172.72 tokens</li><li>max: 356 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-----------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What are the key steps to obtain input from stakeholder communities to identify unacceptable use in AI systems?</code> | <code>15 <br>GV-1.3-004 Obtain input from stakeholder communities to identify unacceptable use, in <br>accordance with activities in the AI RMF Map function. <br>CBRN Information or Capabilities; <br>Obscene, Degrading, and/or <br>Abusive Content; Harmful Bias <br>and Homogenization; Dangerous, <br>Violent, or Hateful Content <br>GV-1.3-005 <br>Maintain an updated hierarchy of identified and expected GAI risks connected to <br>contexts of GAI model advancement and use, potentially including specialized risk <br>levels for GAI systems that address issues such as model collapse and algorithmic <br>monoculture. <br>Harmful Bias and Homogenization <br>GV-1.3-006 <br>Reevaluate organizational risk tolerances to account for unacceptable negative risk <br>(such as where significant negative impacts are imminent, severe harms are <br>actually occurring, or large-scale risks could occur); and broad GAI negative risks, <br>including: Immature safety or risk cultures related to AI and GAI design, <br>development and deployment, public information integrity risks, including impacts</code> |
| <code>How can organizations maintain an updated hierarchy of identified and expected GAI risks?</code> | <code>15 <br>GV-1.3-004 Obtain input from stakeholder communities to identify unacceptable use, in <br>accordance with activities in the AI RMF Map function. <br>CBRN Information or Capabilities; <br>Obscene, Degrading, and/or <br>Abusive Content; Harmful Bias <br>and Homogenization; Dangerous, <br>Violent, or Hateful Content <br>GV-1.3-005 <br>Maintain an updated hierarchy of identified and expected GAI risks connected to <br>contexts of GAI model advancement and use, potentially including specialized risk <br>levels for GAI systems that address issues such as model collapse and algorithmic <br>monoculture. <br>Harmful Bias and Homogenization <br>GV-1.3-006 <br>Reevaluate organizational risk tolerances to account for unacceptable negative risk <br>(such as where significant negative impacts are imminent, severe harms are <br>actually occurring, or large-scale risks could occur); and broad GAI negative risks, <br>including: Immature safety or risk cultures related to AI and GAI design, <br>development and deployment, public information integrity risks, including impacts</code> |
| <code>What are some examples of unacceptable uses of AI as identified by stakeholder communities?</code> | <code>15 <br>GV-1.3-004 Obtain input from stakeholder communities to identify unacceptable use, in <br>accordance with activities in the AI RMF Map function. <br>CBRN Information or Capabilities; <br>Obscene, Degrading, and/or <br>Abusive Content; Harmful Bias <br>and Homogenization; Dangerous, <br>Violent, or Hateful Content <br>GV-1.3-005 <br>Maintain an updated hierarchy of identified and expected GAI risks connected to <br>contexts of GAI model advancement and use, potentially including specialized risk <br>levels for GAI systems that address issues such as model collapse and algorithmic <br>monoculture. <br>Harmful Bias and Homogenization <br>GV-1.3-006 <br>Reevaluate organizational risk tolerances to account for unacceptable negative risk <br>(such as where significant negative impacts are imminent, severe harms are <br>actually occurring, or large-scale risks could occur); and broad GAI negative risks, <br>including: Immature safety or risk cultures related to AI and GAI design, <br>development and deployment, public information integrity risks, including impacts</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 1
- `per_device_eval_batch_size`: 1
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 1
- `per_device_eval_batch_size`: 1
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | cosine_map@100 |
|:------:|:-----:|:-------------:|:--------------:|
| 0.0146 | 50 | - | 0.4134 |
| 0.0292 | 100 | - | 0.4134 |
| 0.0437 | 150 | - | 0.4134 |
| 0.0583 | 200 | - | 0.4134 |
| 0.0729 | 250 | - | 0.4134 |
| 0.0875 | 300 | - | 0.4134 |
| 0.1020 | 350 | - | 0.4134 |
| 0.1166 | 400 | - | 0.4134 |
| 0.1312 | 450 | - | 0.4134 |
| 0.1458 | 500 | 0.0 | 0.4134 |
| 0.1603 | 550 | - | 0.4134 |
| 0.1749 | 600 | - | 0.4134 |
| 0.1895 | 650 | - | 0.4134 |
| 0.2041 | 700 | - | 0.4134 |
| 0.2187 | 750 | - | 0.4134 |
| 0.2332 | 800 | - | 0.4134 |
| 0.2478 | 850 | - | 0.4134 |
| 0.2624 | 900 | - | 0.4134 |
| 0.2770 | 950 | - | 0.4134 |
| 0.2915 | 1000 | 0.0 | 0.4134 |
| 0.3061 | 1050 | - | 0.4134 |
| 0.3207 | 1100 | - | 0.4134 |
| 0.3353 | 1150 | - | 0.4134 |
| 0.3499 | 1200 | - | 0.4134 |
| 0.3644 | 1250 | - | 0.4134 |
| 0.3790 | 1300 | - | 0.4134 |
| 0.3936 | 1350 | - | 0.4134 |
| 0.4082 | 1400 | - | 0.4134 |
| 0.4227 | 1450 | - | 0.4134 |
| 0.4373 | 1500 | 0.0 | 0.4134 |
| 0.4519 | 1550 | - | 0.4134 |
| 0.4665 | 1600 | - | 0.4134 |
| 0.4810 | 1650 | - | 0.4134 |
| 0.4956 | 1700 | - | 0.4134 |
| 0.5102 | 1750 | - | 0.4134 |
| 0.5248 | 1800 | - | 0.4134 |
| 0.5394 | 1850 | - | 0.4134 |
| 0.5539 | 1900 | - | 0.4134 |
| 0.5685 | 1950 | - | 0.4134 |
| 0.5831 | 2000 | 0.0 | 0.4135 |
| 0.5977 | 2050 | - | 0.4135 |
| 0.6122 | 2100 | - | 0.4135 |
| 0.6268 | 2150 | - | 0.4135 |
| 0.6414 | 2200 | - | 0.4135 |
| 0.6560 | 2250 | - | 0.4135 |
| 0.6706 | 2300 | - | 0.4135 |
| 0.6851 | 2350 | - | 0.4135 |
| 0.6997 | 2400 | - | 0.4135 |
| 0.7143 | 2450 | - | 0.4134 |
| 0.7289 | 2500 | 0.0 | 0.4134 |
| 0.7434 | 2550 | - | 0.4134 |
| 0.7580 | 2600 | - | 0.4134 |
| 0.7726 | 2650 | - | 0.4134 |
| 0.7872 | 2700 | - | 0.4134 |
| 0.8017 | 2750 | - | 0.4134 |
| 0.8163 | 2800 | - | 0.4134 |
| 0.8309 | 2850 | - | 0.4135 |
| 0.8455 | 2900 | - | 0.4135 |
| 0.8601 | 2950 | - | 0.4135 |
| 0.8746 | 3000 | 0.0 | 0.4135 |
| 0.8892 | 3050 | - | 0.4135 |
| 0.9038 | 3100 | - | 0.4135 |
| 0.9184 | 3150 | - | 0.4135 |
| 0.9329 | 3200 | - | 0.4135 |
| 0.9475 | 3250 | - | 0.4135 |
| 0.9621 | 3300 | - | 0.4135 |
| 0.9767 | 3350 | - | 0.4135 |
| 0.9913 | 3400 | - | 0.4135 |
| 1.0 | 3430 | - | 0.4135 |
| 1.0058 | 3450 | - | 0.4135 |
| 1.0204 | 3500 | 0.0 | 0.4135 |
| 1.0350 | 3550 | - | 0.4135 |
| 1.0496 | 3600 | - | 0.4135 |
| 1.0641 | 3650 | - | 0.4135 |
| 1.0787 | 3700 | - | 0.4135 |
| 1.0933 | 3750 | - | 0.4135 |
| 1.1079 | 3800 | - | 0.4135 |
| 1.1224 | 3850 | - | 0.4135 |
| 1.1370 | 3900 | - | 0.4179 |
| 1.1516 | 3950 | - | 0.4179 |
| 1.1662 | 4000 | 0.0 | 0.4179 |
| 1.1808 | 4050 | - | 0.4179 |
| 1.1953 | 4100 | - | 0.4179 |
| 1.2099 | 4150 | - | 0.4179 |
| 1.2245 | 4200 | - | 0.4179 |
| 1.2391 | 4250 | - | 0.4179 |
| 1.2536 | 4300 | - | 0.4179 |
| 1.2682 | 4350 | - | 0.4179 |
| 1.2828 | 4400 | - | 0.4179 |
| 1.2974 | 4450 | - | 0.4179 |
| 1.3120 | 4500 | 0.0 | 0.4179 |
| 1.3265 | 4550 | - | 0.4179 |
| 1.3411 | 4600 | - | 0.4179 |
| 1.3557 | 4650 | - | 0.4179 |
| 1.3703 | 4700 | - | 0.4179 |
| 1.3848 | 4750 | - | 0.4179 |
| 1.3994 | 4800 | - | 0.4179 |
| 1.4140 | 4850 | - | 0.4179 |
| 1.4286 | 4900 | - | 0.4179 |
| 1.4431 | 4950 | - | 0.4179 |
| 1.4577 | 5000 | 0.0 | 0.4179 |
| 1.4723 | 5050 | - | 0.4179 |
| 1.4869 | 5100 | - | 0.4179 |
| 1.5015 | 5150 | - | 0.4179 |
| 1.5160 | 5200 | - | 0.4179 |
| 1.5306 | 5250 | - | 0.4179 |
| 1.5452 | 5300 | - | 0.4179 |
| 1.5598 | 5350 | - | 0.4179 |
| 1.5743 | 5400 | - | 0.4179 |
| 1.5889 | 5450 | - | 0.4179 |
| 1.6035 | 5500 | 0.0 | 0.4179 |
| 1.6181 | 5550 | - | 0.4179 |
| 1.6327 | 5600 | - | 0.4179 |
| 1.6472 | 5650 | - | 0.4179 |
| 1.6618 | 5700 | - | 0.4179 |
| 1.6764 | 5750 | - | 0.4179 |
| 1.6910 | 5800 | - | 0.4179 |
| 1.7055 | 5850 | - | 0.4179 |
| 1.7201 | 5900 | - | 0.4179 |
| 1.7347 | 5950 | - | 0.4179 |
| 1.7493 | 6000 | 0.0 | 0.4179 |
| 1.7638 | 6050 | - | 0.4179 |
| 1.7784 | 6100 | - | 0.4179 |
| 1.7930 | 6150 | - | 0.4179 |
| 1.8076 | 6200 | - | 0.4179 |
| 1.8222 | 6250 | - | 0.4179 |
| 1.8367 | 6300 | - | 0.4179 |
| 1.8513 | 6350 | - | 0.4179 |
| 1.8659 | 6400 | - | 0.4179 |
| 1.8805 | 6450 | - | 0.4179 |
| 1.8950 | 6500 | 0.0 | 0.4179 |
| 1.9096 | 6550 | - | 0.4179 |
| 1.9242 | 6600 | - | 0.4179 |
| 1.9388 | 6650 | - | 0.4179 |
| 1.9534 | 6700 | - | 0.4179 |
| 1.9679 | 6750 | - | 0.4179 |
| 1.9825 | 6800 | - | 0.4179 |
| 1.9971 | 6850 | - | 0.4179 |
| 2.0 | 6860 | - | 0.4179 |
| 2.0117 | 6900 | - | 0.4179 |
| 2.0262 | 6950 | - | 0.4179 |
| 2.0408 | 7000 | 0.0 | 0.4179 |
| 2.0554 | 7050 | - | 0.4179 |
| 2.0700 | 7100 | - | 0.4179 |
| 2.0845 | 7150 | - | 0.4179 |
| 2.0991 | 7200 | - | 0.4179 |
| 2.1137 | 7250 | - | 0.4179 |
| 2.1283 | 7300 | - | 0.4179 |
| 2.1429 | 7350 | - | 0.4179 |
| 2.1574 | 7400 | - | 0.4179 |
| 2.1720 | 7450 | - | 0.4179 |
| 2.1866 | 7500 | 0.0 | 0.4179 |
| 2.2012 | 7550 | - | 0.4179 |
| 2.2157 | 7600 | - | 0.4179 |
| 2.2303 | 7650 | - | 0.4179 |
| 2.2449 | 7700 | - | 0.4179 |
| 2.2595 | 7750 | - | 0.4179 |
| 2.2741 | 7800 | - | 0.4179 |
| 2.2886 | 7850 | - | 0.4179 |
| 2.3032 | 7900 | - | 0.4179 |
| 2.3178 | 7950 | - | 0.4179 |
| 2.3324 | 8000 | 0.0 | 0.4179 |
| 2.3469 | 8050 | - | 0.4179 |
| 2.3615 | 8100 | - | 0.4179 |
| 2.3761 | 8150 | - | 0.4179 |
| 2.3907 | 8200 | - | 0.4179 |
| 2.4052 | 8250 | - | 0.4179 |
| 2.4198 | 8300 | - | 0.4179 |
| 2.4344 | 8350 | - | 0.4179 |
| 2.4490 | 8400 | - | 0.4179 |
| 2.4636 | 8450 | - | 0.4179 |
| 2.4781 | 8500 | 0.0 | 0.4179 |
| 2.4927 | 8550 | - | 0.4179 |
| 2.5073 | 8600 | - | 0.4179 |
| 2.5219 | 8650 | - | 0.4179 |
| 2.5364 | 8700 | - | 0.4179 |
| 2.5510 | 8750 | - | 0.4179 |
| 2.5656 | 8800 | - | 0.4179 |
| 2.5802 | 8850 | - | 0.4179 |
| 2.5948 | 8900 | - | 0.4179 |
| 2.6093 | 8950 | - | 0.4179 |
| 2.6239 | 9000 | 0.0 | 0.4179 |
| 2.6385 | 9050 | - | 0.4179 |
| 2.6531 | 9100 | - | 0.4179 |
| 2.6676 | 9150 | - | 0.4179 |
| 2.6822 | 9200 | - | 0.4179 |
| 2.6968 | 9250 | - | 0.4223 |
| 2.7114 | 9300 | - | 0.4223 |
| 2.7259 | 9350 | - | 0.4223 |
| 2.7405 | 9400 | - | 0.4223 |
| 2.7551 | 9450 | - | 0.4223 |
| 2.7697 | 9500 | 0.0 | 0.4223 |
| 2.7843 | 9550 | - | 0.4223 |
| 2.7988 | 9600 | - | 0.4223 |
| 2.8134 | 9650 | - | 0.4223 |
| 2.8280 | 9700 | - | 0.4223 |
| 2.8426 | 9750 | - | 0.4223 |
| 2.8571 | 9800 | - | 0.4223 |
| 2.8717 | 9850 | - | 0.4223 |
| 2.8863 | 9900 | - | 0.4223 |
| 2.9009 | 9950 | - | 0.4223 |
| 2.9155 | 10000 | 0.0 | 0.4223 |
| 2.9300 | 10050 | - | 0.4223 |
| 2.9446 | 10100 | - | 0.4223 |
| 2.9592 | 10150 | - | 0.4223 |
| 2.9738 | 10200 | - | 0.4223 |
| 2.9883 | 10250 | - | 0.4223 |
| 3.0 | 10290 | - | 0.4223 |
| 3.0029 | 10300 | - | 0.4223 |
| 3.0175 | 10350 | - | 0.4223 |
| 3.0321 | 10400 | - | 0.4223 |
| 3.0466 | 10450 | - | 0.4223 |
| 3.0612 | 10500 | 0.0 | 0.4223 |
| 3.0758 | 10550 | - | 0.4223 |
| 3.0904 | 10600 | - | 0.4223 |
| 3.1050 | 10650 | - | 0.4223 |
| 3.1195 | 10700 | - | 0.4223 |
| 3.1341 | 10750 | - | 0.4223 |
| 3.1487 | 10800 | - | 0.4223 |
| 3.1633 | 10850 | - | 0.4223 |
| 3.1778 | 10900 | - | 0.4223 |
| 3.1924 | 10950 | - | 0.4223 |
| 3.2070 | 11000 | 0.0 | 0.4223 |
| 3.2216 | 11050 | - | 0.4223 |
| 3.2362 | 11100 | - | 0.4223 |
| 3.2507 | 11150 | - | 0.4223 |
| 3.2653 | 11200 | - | 0.4223 |
| 3.2799 | 11250 | - | 0.4223 |
| 3.2945 | 11300 | - | 0.4223 |
| 3.3090 | 11350 | - | 0.4223 |
| 3.3236 | 11400 | - | 0.4223 |
| 3.3382 | 11450 | - | 0.4223 |
| 3.3528 | 11500 | 0.0 | 0.4223 |
| 3.3673 | 11550 | - | 0.4223 |
| 3.3819 | 11600 | - | 0.4223 |
| 3.3965 | 11650 | - | 0.4223 |
| 3.4111 | 11700 | - | 0.4223 |
| 3.4257 | 11750 | - | 0.4223 |
| 3.4402 | 11800 | - | 0.4223 |
| 3.4548 | 11850 | - | 0.4223 |
| 3.4694 | 11900 | - | 0.4223 |
| 3.4840 | 11950 | - | 0.4223 |
| 3.4985 | 12000 | 0.0 | 0.4223 |
| 3.5131 | 12050 | - | 0.4223 |
| 3.5277 | 12100 | - | 0.4223 |
| 3.5423 | 12150 | - | 0.4223 |
| 3.5569 | 12200 | - | 0.4223 |
| 3.5714 | 12250 | - | 0.4223 |
| 3.5860 | 12300 | - | 0.4223 |
| 3.6006 | 12350 | - | 0.4223 |
| 3.6152 | 12400 | - | 0.4223 |
| 3.6297 | 12450 | - | 0.4223 |
| 3.6443 | 12500 | 0.0 | 0.4223 |
| 3.6589 | 12550 | - | 0.4223 |
| 3.6735 | 12600 | - | 0.4223 |
| 3.6880 | 12650 | - | 0.4223 |
| 3.7026 | 12700 | - | 0.4223 |
| 3.7172 | 12750 | - | 0.4223 |
| 3.7318 | 12800 | - | 0.4223 |
| 3.7464 | 12850 | - | 0.4223 |
| 3.7609 | 12900 | - | 0.4223 |
| 3.7755 | 12950 | - | 0.4223 |
| 3.7901 | 13000 | 0.0 | 0.4223 |
| 3.8047 | 13050 | - | 0.4223 |
| 3.8192 | 13100 | - | 0.4226 |
| 3.8338 | 13150 | - | 0.4226 |
| 3.8484 | 13200 | - | 0.4226 |
| 3.8630 | 13250 | - | 0.4226 |
| 3.8776 | 13300 | - | 0.4226 |
| 3.8921 | 13350 | - | 0.4226 |
| 3.9067 | 13400 | - | 0.4226 |
| 3.9213 | 13450 | - | 0.4226 |
| 3.9359 | 13500 | 0.0 | 0.4226 |
| 3.9504 | 13550 | - | 0.4226 |
| 3.9650 | 13600 | - | 0.4226 |
| 3.9796 | 13650 | - | 0.4226 |
| 3.9942 | 13700 | - | 0.4226 |
| 4.0 | 13720 | - | 0.4226 |
| 4.0087 | 13750 | - | 0.4226 |
| 4.0233 | 13800 | - | 0.4226 |
| 4.0379 | 13850 | - | 0.4226 |
| 4.0525 | 13900 | - | 0.4226 |
| 4.0671 | 13950 | - | 0.4226 |
| 4.0816 | 14000 | 0.0 | 0.4226 |
| 4.0962 | 14050 | - | 0.4226 |
| 4.1108 | 14100 | - | 0.4226 |
| 4.1254 | 14150 | - | 0.4226 |
| 4.1399 | 14200 | - | 0.4226 |
| 4.1545 | 14250 | - | 0.4226 |
| 4.1691 | 14300 | - | 0.4226 |
| 4.1837 | 14350 | - | 0.4226 |
| 4.1983 | 14400 | - | 0.4226 |
| 4.2128 | 14450 | - | 0.4226 |
| 4.2274 | 14500 | 0.0 | 0.4226 |
| 4.2420 | 14550 | - | 0.4226 |
| 4.2566 | 14600 | - | 0.4226 |
| 4.2711 | 14650 | - | 0.4226 |
| 4.2857 | 14700 | - | 0.4226 |
| 4.3003 | 14750 | - | 0.4226 |
| 4.3149 | 14800 | - | 0.4226 |
| 4.3294 | 14850 | - | 0.4226 |
| 4.3440 | 14900 | - | 0.4226 |
| 4.3586 | 14950 | - | 0.4226 |
| 4.3732 | 15000 | 0.0 | 0.4226 |
| 4.3878 | 15050 | - | 0.4226 |
| 4.4023 | 15100 | - | 0.4226 |
| 4.4169 | 15150 | - | 0.4226 |
| 4.4315 | 15200 | - | 0.4226 |
| 4.4461 | 15250 | - | 0.4226 |
| 4.4606 | 15300 | - | 0.4226 |
| 4.4752 | 15350 | - | 0.4226 |
| 4.4898 | 15400 | - | 0.4226 |
| 4.5044 | 15450 | - | 0.4226 |
| 4.5190 | 15500 | 0.0 | 0.4226 |
| 4.5335 | 15550 | - | 0.4226 |
| 4.5481 | 15600 | - | 0.4226 |
| 4.5627 | 15650 | - | 0.4226 |
| 4.5773 | 15700 | - | 0.4226 |
| 4.5918 | 15750 | - | 0.4226 |
| 4.6064 | 15800 | - | 0.4226 |
| 4.6210 | 15850 | - | 0.4226 |
| 4.6356 | 15900 | - | 0.4226 |
| 4.6501 | 15950 | - | 0.4226 |
| 4.6647 | 16000 | 0.0 | 0.4226 |
| 4.6793 | 16050 | - | 0.4226 |
| 4.6939 | 16100 | - | 0.4226 |
| 4.7085 | 16150 | - | 0.4226 |
| 4.7230 | 16200 | - | 0.4226 |
| 4.7376 | 16250 | - | 0.4226 |
| 4.7522 | 16300 | - | 0.4226 |
| 4.7668 | 16350 | - | 0.4226 |
| 4.7813 | 16400 | - | 0.4226 |
| 4.7959 | 16450 | - | 0.4226 |
| 4.8105 | 16500 | 0.0 | 0.4226 |
| 4.8251 | 16550 | - | 0.4226 |
| 4.8397 | 16600 | - | 0.4226 |
| 4.8542 | 16650 | - | 0.4226 |
| 4.8688 | 16700 | - | 0.4226 |
| 4.8834 | 16750 | - | 0.4226 |
| 4.8980 | 16800 | - | 0.4226 |
| 4.9125 | 16850 | - | 0.4226 |
| 4.9271 | 16900 | - | 0.4226 |
| 4.9417 | 16950 | - | 0.4226 |
| 4.9563 | 17000 | 0.0 | 0.4226 |
| 4.9708 | 17050 | - | 0.4226 |
| 4.9854 | 17100 | - | 0.4226 |
| 5.0 | 17150 | - | 0.4226 |
| 0.0146 | 50 | - | 0.4226 |
| 0.0292 | 100 | - | 0.4226 |
| 0.0437 | 150 | - | 0.4226 |
| 0.0583 | 200 | - | 0.4226 |
| 0.0729 | 250 | - | 0.4226 |
| 0.0875 | 300 | - | 0.4226 |
| 0.1020 | 350 | - | 0.4226 |
| 0.1166 | 400 | - | 0.4226 |
| 0.1312 | 450 | - | 0.4226 |
| 0.1458 | 500 | 0.0 | 0.4226 |
| 0.1603 | 550 | - | 0.4226 |
| 0.1749 | 600 | - | 0.4226 |
| 0.1895 | 650 | - | 0.4226 |
| 0.2041 | 700 | - | 0.4226 |
| 0.2187 | 750 | - | 0.4226 |
| 0.2332 | 800 | - | 0.4226 |
| 0.2478 | 850 | - | 0.4226 |
| 0.2624 | 900 | - | 0.4226 |
| 0.2770 | 950 | - | 0.4226 |
| 0.2915 | 1000 | 0.0 | 0.4227 |
| 0.3061 | 1050 | - | 0.4227 |
| 0.3207 | 1100 | - | 0.4227 |
| 0.3353 | 1150 | - | 0.4227 |
| 0.3499 | 1200 | - | 0.4227 |
| 0.3644 | 1250 | - | 0.4227 |
| 0.3790 | 1300 | - | 0.4227 |
| 0.3936 | 1350 | - | 0.4227 |
| 0.4082 | 1400 | - | 0.4227 |
| 0.4227 | 1450 | - | 0.4227 |
| 0.4373 | 1500 | 0.0 | 0.4227 |
| 0.4519 | 1550 | - | 0.4227 |
| 0.4665 | 1600 | - | 0.4227 |
| 0.4810 | 1650 | - | 0.4227 |
| 0.4956 | 1700 | - | 0.4227 |
| 0.5102 | 1750 | - | 0.4227 |
| 0.5248 | 1800 | - | 0.4227 |
| 0.5394 | 1850 | - | 0.4227 |
| 0.5539 | 1900 | - | 0.4227 |
| 0.5685 | 1950 | - | 0.4227 |
| 0.5831 | 2000 | 0.0 | 0.4227 |
| 0.5977 | 2050 | - | 0.4227 |
| 0.6122 | 2100 | - | 0.4227 |
| 0.6268 | 2150 | - | 0.4227 |
| 0.6414 | 2200 | - | 0.4227 |
| 0.6560 | 2250 | - | 0.4227 |
| 0.6706 | 2300 | - | 0.4227 |
| 0.6851 | 2350 | - | 0.4227 |
| 0.6997 | 2400 | - | 0.4227 |
| 0.7143 | 2450 | - | 0.4227 |
| 0.7289 | 2500 | 0.0 | 0.4227 |
| 0.7434 | 2550 | - | 0.4227 |
| 0.7580 | 2600 | - | 0.4227 |
| 0.7726 | 2650 | - | 0.4227 |
| 0.7872 | 2700 | - | 0.4227 |
| 0.8017 | 2750 | - | 0.4227 |
| 0.8163 | 2800 | - | 0.4227 |
| 0.8309 | 2850 | - | 0.4227 |
| 0.8455 | 2900 | - | 0.4227 |
| 0.8601 | 2950 | - | 0.4227 |
| 0.8746 | 3000 | 0.0 | 0.4227 |
| 0.8892 | 3050 | - | 0.4227 |
| 0.9038 | 3100 | - | 0.4227 |
| 0.9184 | 3150 | - | 0.4227 |
| 0.9329 | 3200 | - | 0.4227 |
| 0.9475 | 3250 | - | 0.4227 |
| 0.9621 | 3300 | - | 0.4227 |
| 0.9767 | 3350 | - | 0.4227 |
| 0.9913 | 3400 | - | 0.4227 |
| 1.0 | 3430 | - | 0.4227 |
| 1.0058 | 3450 | - | 0.4227 |
| 1.0204 | 3500 | 0.0 | 0.4227 |
| 1.0350 | 3550 | - | 0.4227 |
| 1.0496 | 3600 | - | 0.4227 |
| 1.0641 | 3650 | - | 0.4227 |
| 1.0787 | 3700 | - | 0.4227 |
| 1.0933 | 3750 | - | 0.4227 |
| 1.1079 | 3800 | - | 0.4227 |
| 1.1224 | 3850 | - | 0.4227 |
| 1.1370 | 3900 | - | 0.4227 |
| 1.1516 | 3950 | - | 0.4227 |
| 1.1662 | 4000 | 0.0 | 0.4227 |
| 1.1808 | 4050 | - | 0.4227 |
| 1.1953 | 4100 | - | 0.4227 |
| 1.2099 | 4150 | - | 0.4231 |
| 1.2245 | 4200 | - | 0.4231 |
| 1.2391 | 4250 | - | 0.4231 |
| 1.2536 | 4300 | - | 0.4231 |
| 1.2682 | 4350 | - | 0.4231 |
| 1.2828 | 4400 | - | 0.4231 |
| 1.2974 | 4450 | - | 0.4231 |
| 1.3120 | 4500 | 0.0 | 0.4231 |
| 1.3265 | 4550 | - | 0.4231 |
| 1.3411 | 4600 | - | 0.4231 |
| 1.3557 | 4650 | - | 0.4232 |
| 1.3703 | 4700 | - | 0.4232 |
| 1.3848 | 4750 | - | 0.4232 |
| 1.3994 | 4800 | - | 0.4232 |
| 1.4140 | 4850 | - | 0.4232 |
| 1.4286 | 4900 | - | 0.4232 |
| 1.4431 | 4950 | - | 0.4232 |
| 1.4577 | 5000 | 0.0 | 0.4232 |
| 1.4723 | 5050 | - | 0.4232 |
| 1.4869 | 5100 | - | 0.4232 |
| 1.5015 | 5150 | - | 0.4232 |
| 1.5160 | 5200 | - | 0.4232 |
| 1.5306 | 5250 | - | 0.4232 |
| 1.5452 | 5300 | - | 0.4233 |
| 1.5598 | 5350 | - | 0.4233 |
| 1.5743 | 5400 | - | 0.4233 |
| 1.5889 | 5450 | - | 0.4233 |
| 1.6035 | 5500 | 0.0 | 0.4233 |
| 1.6181 | 5550 | - | 0.4233 |
| 1.6327 | 5600 | - | 0.4233 |
| 1.6472 | 5650 | - | 0.4233 |
| 1.6618 | 5700 | - | 0.4233 |
| 1.6764 | 5750 | - | 0.4233 |
| 1.6910 | 5800 | - | 0.4233 |
| 1.7055 | 5850 | - | 0.4233 |
| 1.7201 | 5900 | - | 0.4233 |
| 1.7347 | 5950 | - | 0.4233 |
| 1.7493 | 6000 | 0.0 | 0.4233 |
| 1.7638 | 6050 | - | 0.4234 |
| 1.7784 | 6100 | - | 0.4234 |
| 1.7930 | 6150 | - | 0.4234 |
| 1.8076 | 6200 | - | 0.4234 |
| 1.8222 | 6250 | - | 0.4234 |
| 1.8367 | 6300 | - | 0.4234 |
| 1.8513 | 6350 | - | 0.4234 |
| 1.8659 | 6400 | - | 0.4234 |
| 1.8805 | 6450 | - | 0.4234 |
| 1.8950 | 6500 | 0.0 | 0.4234 |
| 1.9096 | 6550 | - | 0.4234 |
| 1.9242 | 6600 | - | 0.4234 |
| 1.9388 | 6650 | - | 0.4234 |
| 1.9534 | 6700 | - | 0.4234 |
| 1.9679 | 6750 | - | 0.4234 |
| 1.9825 | 6800 | - | 0.4234 |
| 1.9971 | 6850 | - | 0.4234 |
| 2.0 | 6860 | - | 0.4234 |
| 2.0117 | 6900 | - | 0.4234 |
| 2.0262 | 6950 | - | 0.4234 |
| 2.0408 | 7000 | 0.0 | 0.4234 |
| 2.0554 | 7050 | - | 0.4234 |
| 2.0700 | 7100 | - | 0.4234 |
| 2.0845 | 7150 | - | 0.4234 |
| 2.0991 | 7200 | - | 0.4234 |
| 2.1137 | 7250 | - | 0.4234 |
| 2.1283 | 7300 | - | 0.4234 |
| 2.1429 | 7350 | - | 0.4234 |
| 2.1574 | 7400 | - | 0.4234 |
| 2.1720 | 7450 | - | 0.4234 |
| 2.1866 | 7500 | 0.0 | 0.4234 |
| 2.2012 | 7550 | - | 0.4234 |
| 2.2157 | 7600 | - | 0.4234 |
| 2.2303 | 7650 | - | 0.4234 |
| 2.2449 | 7700 | - | 0.4234 |
| 2.2595 | 7750 | - | 0.4234 |
| 2.2741 | 7800 | - | 0.4234 |
| 2.2886 | 7850 | - | 0.4234 |
| 2.3032 | 7900 | - | 0.4234 |
| 2.3178 | 7950 | - | 0.4234 |
| 2.3324 | 8000 | 0.0 | 0.4234 |
| 2.3469 | 8050 | - | 0.4234 |
| 2.3615 | 8100 | - | 0.4234 |
| 2.3761 | 8150 | - | 0.4234 |
| 2.3907 | 8200 | - | 0.4234 |
| 2.4052 | 8250 | - | 0.4234 |
| 2.4198 | 8300 | - | 0.4234 |
| 2.4344 | 8350 | - | 0.4234 |
| 2.4490 | 8400 | - | 0.4234 |
| 2.4636 | 8450 | - | 0.4234 |
| 2.4781 | 8500 | 0.0 | 0.4234 |
| 2.4927 | 8550 | - | 0.4234 |
| 2.5073 | 8600 | - | 0.4234 |
| 2.5219 | 8650 | - | 0.4234 |
| 2.5364 | 8700 | - | 0.4234 |
| 2.5510 | 8750 | - | 0.4234 |
| 2.5656 | 8800 | - | 0.4234 |
| 2.5802 | 8850 | - | 0.4234 |
| 2.5948 | 8900 | - | 0.4234 |
| 2.6093 | 8950 | - | 0.4234 |
| 2.6239 | 9000 | 0.0 | 0.4234 |
| 2.6385 | 9050 | - | 0.4234 |
| 2.6531 | 9100 | - | 0.4234 |
| 2.6676 | 9150 | - | 0.4234 |
| 2.6822 | 9200 | - | 0.4234 |
| 2.6968 | 9250 | - | 0.4234 |
| 2.7114 | 9300 | - | 0.4234 |
| 2.7259 | 9350 | - | 0.4234 |
| 2.7405 | 9400 | - | 0.4234 |
| 2.7551 | 9450 | - | 0.4234 |
| 2.7697 | 9500 | 0.0 | 0.4234 |
| 2.7843 | 9550 | - | 0.4234 |
| 2.7988 | 9600 | - | 0.4234 |
| 2.8134 | 9650 | - | 0.4234 |
| 2.8280 | 9700 | - | 0.4234 |
| 2.8426 | 9750 | - | 0.4234 |
| 2.8571 | 9800 | - | 0.4234 |
| 2.8717 | 9850 | - | 0.4234 |
| 2.8863 | 9900 | - | 0.4234 |
| 2.9009 | 9950 | - | 0.4234 |
| 2.9155 | 10000 | 0.0 | 0.4234 |
| 2.9300 | 10050 | - | 0.4234 |
| 2.9446 | 10100 | - | 0.4234 |
| 2.9592 | 10150 | - | 0.4234 |
| 2.9738 | 10200 | - | 0.4234 |
| 2.9883 | 10250 | - | 0.4234 |
| 3.0 | 10290 | - | 0.4234 |
| 3.0029 | 10300 | - | 0.4234 |
| 3.0175 | 10350 | - | 0.4234 |
| 3.0321 | 10400 | - | 0.4234 |
| 3.0466 | 10450 | - | 0.4234 |
| 3.0612 | 10500 | 0.0 | 0.4234 |
| 3.0758 | 10550 | - | 0.4234 |
| 3.0904 | 10600 | - | 0.4234 |
| 3.1050 | 10650 | - | 0.4234 |
| 3.1195 | 10700 | - | 0.4234 |
| 3.1341 | 10750 | - | 0.4234 |
| 3.1487 | 10800 | - | 0.4234 |
| 3.1633 | 10850 | - | 0.4234 |
| 3.1778 | 10900 | - | 0.4234 |
| 3.1924 | 10950 | - | 0.4234 |
| 3.2070 | 11000 | 0.0 | 0.4234 |
| 3.2216 | 11050 | - | 0.4234 |
| 3.2362 | 11100 | - | 0.4234 |
| 3.2507 | 11150 | - | 0.4234 |
| 3.2653 | 11200 | - | 0.4234 |
| 3.2799 | 11250 | - | 0.4234 |
| 3.2945 | 11300 | - | 0.4234 |
| 3.3090 | 11350 | - | 0.4234 |
| 3.3236 | 11400 | - | 0.4234 |
| 3.3382 | 11450 | - | 0.4234 |
| 3.3528 | 11500 | 0.0 | 0.4234 |
| 3.3673 | 11550 | - | 0.4234 |
| 3.3819 | 11600 | - | 0.4234 |
| 3.3965 | 11650 | - | 0.4234 |
| 3.4111 | 11700 | - | 0.4234 |
| 3.4257 | 11750 | - | 0.4234 |
| 3.4402 | 11800 | - | 0.4234 |
| 3.4548 | 11850 | - | 0.4235 |
| 3.4694 | 11900 | - | 0.4235 |
| 3.4840 | 11950 | - | 0.4235 |
| 3.4985 | 12000 | 0.0 | 0.4235 |
| 3.5131 | 12050 | - | 0.4235 |
| 3.5277 | 12100 | - | 0.4235 |
| 3.5423 | 12150 | - | 0.4235 |
| 3.5569 | 12200 | - | 0.4235 |
| 3.5714 | 12250 | - | 0.4235 |
| 3.5860 | 12300 | - | 0.4235 |
| 3.6006 | 12350 | - | 0.4235 |
| 3.6152 | 12400 | - | 0.4235 |
| 3.6297 | 12450 | - | 0.4235 |
| 3.6443 | 12500 | 0.0 | 0.4235 |
| 3.6589 | 12550 | - | 0.4235 |
| 3.6735 | 12600 | - | 0.4235 |
| 3.6880 | 12650 | - | 0.4235 |
| 3.7026 | 12700 | - | 0.4235 |
| 3.7172 | 12750 | - | 0.4235 |
| 3.7318 | 12800 | - | 0.4235 |
| 3.7464 | 12850 | - | 0.4235 |
| 3.7609 | 12900 | - | 0.4235 |
| 3.7755 | 12950 | - | 0.4235 |
| 3.7901 | 13000 | 0.0 | 0.4235 |
| 3.8047 | 13050 | - | 0.4235 |
| 3.8192 | 13100 | - | 0.4235 |
| 3.8338 | 13150 | - | 0.4235 |
| 3.8484 | 13200 | - | 0.4235 |
| 3.8630 | 13250 | - | 0.4235 |
| 3.8776 | 13300 | - | 0.4235 |
| 3.8921 | 13350 | - | 0.4235 |
| 3.9067 | 13400 | - | 0.4235 |
| 3.9213 | 13450 | - | 0.4235 |
| 3.9359 | 13500 | 0.0 | 0.4235 |
| 3.9504 | 13550 | - | 0.4235 |
| 3.9650 | 13600 | - | 0.4235 |
| 3.9796 | 13650 | - | 0.4235 |
| 3.9942 | 13700 | - | 0.4235 |
| 4.0 | 13720 | - | 0.4235 |
| 4.0087 | 13750 | - | 0.4235 |
| 4.0233 | 13800 | - | 0.4235 |
| 4.0379 | 13850 | - | 0.4235 |
| 4.0525 | 13900 | - | 0.4235 |
| 4.0671 | 13950 | - | 0.4235 |
| 4.0816 | 14000 | 0.0 | 0.4236 |
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 2.14.4
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |