See axolotl config
axolotl version: 0.4.1
# base_model: deepseek-ai/deepseek-coder-1.3b-instruct
base_model: Qwen/CodeQwen1.5-7B-Chat
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
is_mistral_derived_model: false
load_in_8bit: true
load_in_4bit: false
strict: false
lora_fan_in_fan_out: false
data_seed: 49
seed: 49
datasets:
- path: sample_data/alpaca_synth_cypher.jsonl
type: sharegpt
conversation: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./qlora-alpaca-codeqwen1.5-7b-chat-lora8
# output_dir: ./qlora-alpaca-out
hub_model_id: jermyn/CodeQwen1.5-7B-Chat-lora8-NLQ2Cypher
# hub_model_id: jermyn/deepseek-code-1.3b-inst-NLQ2Cypher
adapter: lora # 'qlora' or leave blank for full finetune
lora_model_dir:
sequence_len: 896
sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
# lora_target_modules:
# - gate_proj
# - down_proj
# - up_proj
# - q_proj
# - v_proj
# - k_proj
# - o_proj
# If you added new tokens to the tokenizer, you may need to save some LoRA modules because they need to know the new tokens.
# For LLaMA and Mistral, you need to save `embed_tokens` and `lm_head`. It may vary for other models.
# `embed_tokens` converts tokens to embeddings, and `lm_head` converts embeddings to token probabilities.
# https://github.com/huggingface/peft/issues/334#issuecomment-1561727994
# lora_modules_to_save:
# - embed_tokens
# - lm_head
wandb_project: fine-tune-axolotl
wandb_entity: jermyn
gradient_accumulation_steps: 2
micro_batch_size: 8
eval_batch_size: 8
num_epochs: 6
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0005
max_grad_norm: 1.0
adam_beta2: 0.95
adam_epsilon: 0.00001
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
# saves_per_epoch: 6
save_steps: 10
save_total_limit: 3
debug:
weight_decay: 0.0
fsdp:
fsdp_config:
# special_tokens:
# bos_token: "<s>"
# eos_token: "</s>"
# unk_token: "<unk>"
save_safetensors: true
CodeQwen1.5-7B-Chat-lora8-NLQ2Cypher
This model is a fine-tuned version of Qwen/CodeQwen1.5-7B-Chat on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3720
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 49
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1649 | 0.1538 | 1 | 0.9270 |
1.1566 | 0.3077 | 2 | 0.9268 |
1.0746 | 0.6154 | 4 | 0.8194 |
0.6428 | 0.9231 | 6 | 0.4970 |
0.2459 | 1.2308 | 8 | 0.4760 |
0.3512 | 1.5385 | 10 | 0.5091 |
0.1654 | 1.8462 | 12 | 0.4742 |
0.1484 | 2.1538 | 14 | 0.4560 |
0.137 | 2.4615 | 16 | 0.4105 |
0.0746 | 2.7692 | 18 | 0.3736 |
0.0539 | 3.0769 | 20 | 0.3412 |
0.1147 | 3.3846 | 22 | 0.3307 |
0.056 | 3.6923 | 24 | 0.3242 |
0.0767 | 4.0 | 26 | 0.3524 |
0.0583 | 4.3077 | 28 | 0.3690 |
0.0666 | 4.6154 | 30 | 0.3727 |
0.0539 | 4.9231 | 32 | 0.3773 |
0.0367 | 5.2308 | 34 | 0.3796 |
0.0297 | 5.5385 | 36 | 0.3720 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for jermyn/CodeQwen1.5-7B-Chat-lora8-NLQ2Cypher
Base model
Qwen/CodeQwen1.5-7B-Chat