metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- financial_phrasebank
metrics:
- f1
- accuracy
model-index:
- name: phrasebank-sentiment-analysis
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: financial_phrasebank
type: financial_phrasebank
config: sentences_50agree
split: train
args: sentences_50agree
metrics:
- name: F1
type: f1
value: 0.8385501226246813
- name: Accuracy
type: accuracy
value: 0.8528198074277854
phrasebank-sentiment-analysis
This model is a fine-tuned version of bert-base-uncased on the financial_phrasebank dataset. It achieves the following results on the evaluation set:
- Loss: 0.5500
- F1: 0.8386
- Accuracy: 0.8528
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
---|---|---|---|---|---|
0.6031 | 0.94 | 100 | 0.3779 | 0.8373 | 0.8501 |
0.2667 | 1.89 | 200 | 0.4195 | 0.8408 | 0.8638 |
0.1264 | 2.83 | 300 | 0.4813 | 0.8459 | 0.8666 |
0.0582 | 3.77 | 400 | 0.5500 | 0.8386 | 0.8528 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0
- Datasets 2.14.5
- Tokenizers 0.14.1