metadata
tags:
- spacy
- token-classification
language:
- de
widget:
- text: Mein Asthma behandle ich mit 10mg Salbutamol.
model-index:
- name: de_GPTNERMED_GermanMedBERT
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.9186956522
- name: NER Recall
type: recall
value: 0.8976210705
- name: NER F Score
type: f_score
value: 0.908036098
GermanMedBERT-based model of the GPTNERMED German NER model for medical entities.
See our published paper at: https://doi.org/10.1016/j.jbi.2023.104478
The preprint paper is available at: https://arxiv.org/abs/2208.14493
If you like our work, give us a star on our GitHub repository: https://github.com/frankkramer-lab/GPTNERMED
Feature | Description |
---|---|
Name | de_GPTNERMED_GermanMedBERT |
Version | 1.0.0 |
spaCy | >=3.4.1,<3.5.0 |
Default Pipeline | transformer , ner |
Components | transformer , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | n/a |
License | n/a |
Author | Johann Frei |
Label Scheme
View label scheme (3 labels for 1 components)
Component | Labels |
---|---|
ner |
Diagnose , Dosis , Medikation |
Accuracy
Type | Score |
---|---|
ENTS_F |
90.80 |
ENTS_P |
91.87 |
ENTS_R |
89.76 |
TRANSFORMER_LOSS |
6444.19 |
NER_LOSS |
23776.37 |