bert-base-cased-ner_cv-med-ft

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5926
  • Precision: 0.2559
  • Recall: 0.3460
  • F1: 0.2942
  • Accuracy: 0.8368

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.9616 2.73 30 0.7717 0.0 0.0 0.0 0.8608
0.9266 5.45 60 0.6687 0.0 0.0 0.0 0.8608
0.8486 8.18 90 0.6100 0.2133 0.0488 0.0794 0.8635
0.7421 10.91 120 0.5922 0.2534 0.1966 0.2215 0.8542
0.6481 13.64 150 0.5696 0.2889 0.2378 0.2609 0.8596
0.5948 16.36 180 0.5798 0.2678 0.3034 0.2845 0.8472
0.5621 19.09 210 0.5913 0.2486 0.3293 0.2833 0.8381
0.5234 21.82 240 0.5816 0.2585 0.3262 0.2884 0.8404
0.5028 24.55 270 0.5944 0.2545 0.3476 0.2938 0.8368
0.4975 27.27 300 0.5923 0.2531 0.3476 0.2929 0.8368
0.4791 30.0 330 0.5926 0.2559 0.3460 0.2942 0.8368

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.8.1+cu111
  • Datasets 1.6.2
  • Tokenizers 0.12.1
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.