|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-base-samsum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: test |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 47.6993 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-base-samsum |
|
|
|
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3538 |
|
- Rouge1: 47.6993 |
|
- Rouge2: 24.0887 |
|
- Rougel: 40.2819 |
|
- Rougelsum: 43.8375 |
|
- Gen Len: 17.0842 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.4327 | 1.0 | 1841 | 1.3620 | 47.1926 | 23.4593 | 39.7385 | 43.2514 | 17.0623 | |
|
| 1.3235 | 2.0 | 3683 | 1.3563 | 46.7874 | 23.1964 | 39.4248 | 42.9616 | 16.9585 | |
|
| 1.2477 | 3.0 | 5524 | 1.3538 | 47.6993 | 24.0887 | 40.2819 | 43.8375 | 17.0842 | |
|
| 1.208 | 4.0 | 7366 | 1.3555 | 47.6355 | 24.0054 | 40.1665 | 43.6581 | 17.0965 | |
|
| 1.193 | 5.0 | 9205 | 1.3563 | 47.6582 | 23.9906 | 40.1561 | 43.7082 | 17.1477 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.1 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|