Files changed (1) hide show
  1. embedding.py +0 -102
embedding.py CHANGED
@@ -10,59 +10,6 @@ import torch.nn as nn
10
  from torch import Tensor
11
 
12
 
13
- class GPT2Embeddings(nn.Module):
14
- def __init__(
15
- self,
16
- embed_dim,
17
- vocab_size,
18
- max_position_embeddings,
19
- padding_idx=None,
20
- word_embed_proj_dim=None,
21
- device=None,
22
- dtype=None,
23
- ):
24
- """
25
- If max_position_embeddings <= 0, there's no position embeddings
26
- If word_embe_proj_dim is not None (e.g., OPT-350m), we embed to that dimension
27
- the project up to embed_dim
28
- """
29
- factory_kwargs = {"device": device, "dtype": dtype}
30
- super().__init__()
31
- if word_embed_proj_dim is None:
32
- self.word_embeddings = nn.Embedding(
33
- vocab_size, embed_dim, padding_idx=padding_idx, **factory_kwargs
34
- )
35
- self.project_in = None
36
- else:
37
- self.word_embeddings = nn.Embedding(
38
- vocab_size, word_embed_proj_dim, padding_idx=padding_idx, **factory_kwargs
39
- )
40
- self.project_in = nn.Linear(
41
- word_embed_proj_dim, embed_dim, bias=False, **factory_kwargs
42
- )
43
- self.max_position_embeddings = max_position_embeddings
44
- if self.max_position_embeddings > 0:
45
- self.position_embeddings = nn.Embedding(
46
- max_position_embeddings, embed_dim, **factory_kwargs
47
- )
48
-
49
- def forward(self, input_ids, position_ids=None):
50
- """
51
- input_ids: (batch, seqlen)
52
- position_ids: (batch, seqlen)
53
- """
54
- batch_size, seqlen = input_ids.shape
55
- embeddings = self.word_embeddings(input_ids)
56
- if self.project_in is not None:
57
- embeddings = self.project_in(embeddings)
58
- if self.max_position_embeddings > 0:
59
- if position_ids is None:
60
- position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
61
- position_embeddings = self.position_embeddings(position_ids)
62
- embeddings = embeddings + position_embeddings
63
- return embeddings
64
-
65
-
66
  class BertEmbeddings(nn.Module):
67
  def __init__(
68
  self,
@@ -111,52 +58,3 @@ class BertEmbeddings(nn.Module):
111
  token_type_embeddings = self.token_type_embeddings(token_type_ids)
112
  embeddings = embeddings + token_type_embeddings
113
  return embeddings
114
-
115
-
116
- class VocabParallelEmbedding(nn.Embedding):
117
- def __init__(self, num_embeddings, *args, process_group=None, padding_idx=None, **kwargs):
118
- self.process_group = process_group
119
- if process_group is not None:
120
- world_size = torch.distributed.get_world_size(process_group)
121
- if num_embeddings % world_size != 0:
122
- raise ValueError(
123
- f"num_embeddings ({num_embeddings}) must be divisible by "
124
- f"world_size ({world_size})"
125
- )
126
- if world_size > 1 and padding_idx is not None:
127
- raise RuntimeError("ParallelEmbedding does not support padding_idx")
128
- else:
129
- world_size = 1
130
- super().__init__(num_embeddings // world_size, *args, padding_idx=padding_idx, **kwargs)
131
-
132
- def forward(self, input: Tensor) -> Tensor:
133
- if self.process_group is None:
134
- return super().forward(input)
135
- else:
136
- rank = torch.distributed.get_rank(self.process_group)
137
- vocab_size = self.num_embeddings
138
- vocab_start_index, vocab_end_index = rank * vocab_size, (rank + 1) * vocab_size
139
- # Create a mask of valid vocab ids (1 means it needs to be masked).
140
- input_ids_mask = (input < vocab_start_index) | (input >= vocab_end_index)
141
- input = input - vocab_start_index
142
- input[input_ids_mask] = 0
143
- embeddings = super().forward(input)
144
- embeddings[input_ids_mask] = 0.0
145
- return embeddings
146
-
147
-
148
- class ColumnParallelEmbedding(nn.Embedding):
149
- def __init__(self, num_embeddings, embedding_dim, *args, process_group=None, **kwargs):
150
- self.process_group = process_group
151
- if process_group is not None:
152
- world_size = torch.distributed.get_world_size(process_group)
153
- if embedding_dim % world_size != 0:
154
- raise ValueError(
155
- f"embedding_dim ({embedding_dim}) must be divisible by "
156
- f"world_size ({world_size})"
157
- )
158
- else:
159
- world_size = 1
160
- super().__init__(num_embeddings, embedding_dim // world_size, *args, **kwargs)
161
-
162
-
 
10
  from torch import Tensor
11
 
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  class BertEmbeddings(nn.Module):
14
  def __init__(
15
  self,
 
58
  token_type_embeddings = self.token_type_embeddings(token_type_ids)
59
  embeddings = embeddings + token_type_embeddings
60
  return embeddings