File size: 24,770 Bytes
4bfe854 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py
# Commit id: 3566596ad867ee415dd3c12616dd50c610176f6c
# Rotary varlen support from https://github.com/Dao-AILab/flash-attention/pull/556
# Copyright (c) 2023, Tri Dao.
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, repeat
if torch.cuda.is_available():
try:
from flash_attn.ops.triton.rotary import apply_rotary
except ImportError:
def apply_rotary(*args, **kwargs):
raise RuntimeError(
"FlashAttention is not installed. To proceed with training, please install FlashAttention. "
"For inference, you have two options: either install FlashAttention or disable it by setting use_flash_attn=False when loading the model."
)
def rotate_half(x, interleaved=False):
if not interleaved:
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
else:
x1, x2 = x[..., ::2], x[..., 1::2]
return rearrange(
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
)
def apply_rotary_emb_torch(x, cos, sin, interleaved=False):
"""
x: (batch_size, seqlen, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
"""
ro_dim = cos.shape[-1] * 2
assert ro_dim <= x.shape[-1]
cos, sin = (
cos[: x.shape[1]],
sin[: x.shape[1]],
)
cos = repeat(
cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
)
sin = repeat(
sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
)
return torch.cat(
[
x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin,
x[..., ro_dim:],
],
dim=-1,
)
class ApplyRotaryEmb(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x,
cos,
sin,
interleaved=False,
inplace=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
out = apply_rotary(
x,
cos,
sin,
seqlen_offsets=seqlen_offsets,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
interleaved=interleaved,
inplace=inplace,
)
if isinstance(seqlen_offsets, int):
ctx.save_for_backward(
cos, sin, cu_seqlens
) # Can't save int with save_for_backward
ctx.seqlen_offsets = seqlen_offsets
else:
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
ctx.seqlen_offsets = None
ctx.interleaved = interleaved
ctx.inplace = inplace
ctx.max_seqlen = max_seqlen
return out if not inplace else x
@staticmethod
def backward(ctx, do):
seqlen_offsets = ctx.seqlen_offsets
if seqlen_offsets is None:
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
else:
cos, sin, cu_seqlens = ctx.saved_tensors
# TD [2023-09-02]: For some reason Triton (2.0.0.post1) errors with
# "[CUDA]: invalid device context", and cloning makes it work. Idk why. Triton 2.1.0 works.
if not ctx.interleaved and not ctx.inplace:
do = do.clone()
dx = apply_rotary(
do,
cos,
sin,
seqlen_offsets=seqlen_offsets,
cu_seqlens=cu_seqlens,
max_seqlen=ctx.max_seqlen,
interleaved=ctx.interleaved,
inplace=ctx.inplace,
conjugate=True,
)
return dx, None, None, None, None, None, None, None
def apply_rotary_emb(
x,
cos,
sin,
interleaved=False,
inplace=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
"""
Arguments:
x: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
else (total_seqlen, nheads, headdim)
cos, sin: (seqlen_rotary, rotary_dim / 2)
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
of 1st half and 2nd half (GPT-NeoX style).
inplace: if True, apply rotary embedding in-place.
seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
Most commonly used in inference when we have KV cache.
cu_seqlens: (batch + 1,) or None
max_seqlen: int
Return:
out: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
else (total_seqlen, nheads, headdim)
rotary_dim must be <= headdim
Apply rotary embedding to the first rotary_dim of x.
"""
return ApplyRotaryEmb.apply(
x, cos, sin, interleaved, inplace, seqlen_offsets, cu_seqlens, max_seqlen
)
# For backward compatibility
apply_rotary_emb_func = apply_rotary_emb
class ApplyRotaryEmbQKV_(torch.nn.Module):
@staticmethod
def forward(
qkv,
cos,
sin,
cos_k=None,
sin_k=None,
interleaved=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
use_flash_attn: bool = True,
):
# batch, seqlen, three, nheads, headdim = qkv.shape
assert qkv.shape[-3] == 3
if cos_k is None and sin_k is None and qkv.is_contiguous():
if use_flash_attn:
# Call 1 kernel instead of 2 kernels
# We need qkv to be contiguous so that when we reshape to combine (3, nheads)
# dimensions, we get the same tensor
qk = rearrange(qkv[..., :2, :, :], "... t h d -> ... (t h) d")
# qk = qkv[:, :, :2].reshape(batch, seqlen, -1, headdim)
apply_rotary(
qk,
cos,
sin,
seqlen_offsets=seqlen_offsets,
interleaved=interleaved,
inplace=True,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
else:
q_rot = apply_rotary_emb_torch(
qkv[:, :, 0],
cos,
sin,
interleaved=interleaved,
)
k_rot = apply_rotary_emb_torch(
qkv[:, :, 1],
cos,
sin,
interleaved=interleaved,
)
qkv = torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
else:
cos_k = cos if cos_k is None else cos_k
sin_k = sin if sin_k is None else sin_k
q, k = qkv[..., 0, :, :], qkv[..., 1, :, :]
apply_rotary(
q,
cos,
sin,
seqlen_offsets,
interleaved=interleaved,
inplace=True,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
apply_rotary(
k,
cos_k,
sin_k,
seqlen_offsets,
interleaved=interleaved,
inplace=True,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
ctx.save_for_backward(cos, sin, cos_k, sin_k)
# if isinstance(seqlen_offsets, int):
# ctx.save_for_backward(cos, sin, cos_k, sin_k, cu_seqlens)
# ctx.seqlen_offsets = seqlen_offsets
# else:
# ctx.save_for_backward(cos, sin, cos_k, sin_k, cu_seqlens, seqlen_offsets)
# ctx.seqlen_offsets = None
# ctx.max_seqlen = max_seqlen
# ctx.interleaved = interleaved
return qkv
# @staticmethod
# def backward(ctx, dqkv):
# seqlen_offsets = ctx.seqlen_offsets
# if seqlen_offsets is None:
# cos, sin, cos_k, sin_k, cu_seqlens, seqlen_offsets = ctx.saved_tensors
# else:
# cos, sin, cos_k, sin_k, cu_seqlens = ctx.saved_tensors
# if cos_k is None and sin_k is None and dqkv.is_contiguous():
# # Call 1 kernel instead of 2 kernels
# # We need dqkv to be contiguous so that when we reshape to combine (3, nheads)
# # dimensions, we get the same tensor
# dqk = rearrange(dqkv[..., :2, :, :], "... t h d -> ... (t h) d")
# apply_rotary(
# dqk,
# cos,
# sin,
# seqlen_offsets=seqlen_offsets,
# interleaved=ctx.interleaved,
# inplace=True,
# conjugate=True,
# cu_seqlens=cu_seqlens,
# max_seqlen=ctx.max_seqlen,
# )
# else:
# cos_k = cos if cos_k is None else cos_k
# sin_k = sin if sin_k is None else sin_k
# dq, dk = dqkv[..., 0, :, :], dqkv[..., 1, :, :]
# apply_rotary(
# dq,
# cos,
# sin,
# seqlen_offsets,
# interleaved=ctx.interleaved,
# inplace=True,
# conjugate=True,
# cu_seqlens=cu_seqlens,
# max_seqlen=ctx.max_seqlen,
# )
# apply_rotary(
# dk,
# cos_k,
# sin_k,
# seqlen_offsets,
# interleaved=ctx.interleaved,
# inplace=True,
# conjugate=True,
# cu_seqlens=cu_seqlens,
# max_seqlen=ctx.max_seqlen,
# )
# return dqkv, None, None, None, None, None, None, None, None, None
def apply_rotary_emb_qkv_(
qkv,
cos,
sin,
cos_k=None,
sin_k=None,
interleaved=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
use_flash_attn=True,
):
"""
Arguments:
qkv: (batch_size, seqlen, 3, nheads, headdim) if cu_seqlens is None
else (total_seqlen, 3, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2)
cos_k, sin_k: (seqlen, rotary_dim / 2), optional
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of
1st half and 2nd half (GPT-NeoX style).
seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount.
Most commonly used in inference when we have KV cache.
cu_seqlens: (batch + 1,) or None
max_seqlen: int
Return:
qkv: (batch_size, seqlen, 3, nheads, headdim) if cu_seqlens is None
else (total_seqlen, 3, nheads, headdim)
rotary_dim must be <= headdim
Apply rotary embedding *inplace* to the first rotary_dim of Q and K.
"""
return ApplyRotaryEmbQKV_.forward(
qkv, cos, sin, cos_k, sin_k, interleaved, seqlen_offsets, cu_seqlens, max_seqlen, use_flash_attn,
)
class ApplyRotaryEmbKV_(torch.autograd.Function):
@staticmethod
def forward(
ctx,
kv,
cos,
sin,
interleaved=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
# batch, seqlen, two, nheads, headdim = kv.shape
assert kv.shape[-3] == 2
k = kv[..., 0, :, :]
apply_rotary(
k,
cos,
sin,
seqlen_offsets=seqlen_offsets,
interleaved=interleaved,
inplace=True,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
if isinstance(seqlen_offsets, int):
ctx.save_for_backward(
cos, sin, cu_seqlens
) # Can't save int with save_for_backward
ctx.seqlen_offsets = seqlen_offsets
else:
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
ctx.seqlen_offsets = None
ctx.max_seqlen = max_seqlen
ctx.interleaved = interleaved
return kv
@staticmethod
def backward(ctx, dkv):
seqlen_offsets = ctx.seqlen_offsets
if seqlen_offsets is None:
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
else:
cos, sin, cu_seqlens = ctx.saved_tensors
apply_rotary(
dkv[..., 0, :, :],
cos,
sin,
seqlen_offsets=seqlen_offsets,
interleaved=ctx.interleaved,
inplace=True,
conjugate=True,
cu_seqlens=cu_seqlens,
max_seqlen=ctx.max_seqlen,
)
return dkv, None, None, None, None, None, None
apply_rotary_emb_kv_ = ApplyRotaryEmbKV_.apply
def apply_rotary_emb_kv_(
kv,
cos,
sin,
interleaved=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
"""
Arguments:
kv: (batch_size, seqlen, 2, nheads, headdim) if cu_seqlens is None
else (total_seqlen, 2, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2)
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of
1st half and 2nd half (GPT-NeoX style).
seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount.
Most commonly used in inference when we have KV cache.
cu_seqlens: (batch + 1,) or None
max_seqlen: int
Return:
kv: (batch_size, seqlen, 2, nheads, headdim) if cu_seqlens is None
else (total_seqlen, 2, nheads, headdim)
rotary_dim must be <= headdim
Apply rotary embedding *inplace* to the first rotary_dim of K.
"""
return ApplyRotaryEmbKV_.apply(
kv, cos, sin, interleaved, seqlen_offsets, cu_seqlens, max_seqlen
)
class RotaryEmbedding(torch.nn.Module):
"""
The rotary position embeddings from RoFormer_ (Su et. al).
A crucial insight from the method is that the query and keys are
transformed by rotation matrices which depend on the relative positions.
Other implementations are available in the Rotary Transformer repo_ and in
GPT-NeoX_, GPT-NeoX was an inspiration
.. _RoFormer: https://arxiv.org/abs/2104.09864
.. _repo: https://github.com/ZhuiyiTechnology/roformer
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
"""
def __init__(
self,
dim: int,
base=10000.0,
interleaved=False,
scale_base=None,
pos_idx_in_fp32=True,
device=None,
use_flash_attn=True,
):
"""
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
of 1st half and 2nd half (GPT-NeoX style).
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
otherwise they might be in lower precision.
This option was added because previously (before 2023-07-02), when we construct
the position indices, we use the dtype of self.inv_freq. In most cases this would
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
self.inv_freq would be bf16, and the position indices are also in bf16.
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
embeddings for some positions will coincide.
To maintain compatibility with models previously trained in pure bf16,
we add this option.
"""
super().__init__()
self.dim = dim
self._base = float(base)
self.pos_idx_in_fp32 = pos_idx_in_fp32
self.use_flash_attn = use_flash_attn
# Generate and save the inverse frequency buffer (non trainable)
inv_freq = self._compute_inv_freq(device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.interleaved = interleaved
self.scale_base = scale_base
scale = (
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
/ (1.4 * dim)
if scale_base is not None
else None
)
self.register_buffer("scale", scale, persistent=False)
self._seq_len_cached = 8194
self._cos_cached = None
self._sin_cached = None
# self._cos_k_cached = None
# self._sin_k_cached = None
self._update_cos_sin_cache(seqlen=self._seq_len_cached, device=device)
@property
def base(self):
return self._base
@base.setter
def base(self, new_base):
new_base = float(new_base)
if new_base > 0:
if self._base != new_base: # only update if the base value has changed
self._base = new_base
self._update_cos_sin_cache(
self._seq_len_cached,
device=self.inv_freq.device,
dtype=self._cos_cached.dtype if self._cos_cached is not None else None,
rotary_base_changed=True,
)
else:
raise ValueError("Rotary base value must be positive")
def _compute_inv_freq(self, device=None):
return 1.0 / (
self.base
** (
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
/ self.dim
)
)
def _update_cos_sin_cache(
self, seqlen, device=None, dtype=None, rotary_base_changed=False
):
# Reset the tables if the sequence length has changed,
# if we're on a new device (possibly due to tracing for instance),
# or if we're switching from inference mode to training
# or if the rotary base value was changed
if (
seqlen > self._seq_len_cached
or self._cos_cached is None
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
or (self.training and self._cos_cached.is_inference())
or rotary_base_changed
):
if seqlen != self._seq_len_cached:
self._seq_len_cached = seqlen
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
if rotary_base_changed:
self.inv_freq = self._compute_inv_freq(device=device)
if self.pos_idx_in_fp32:
t = torch.arange(seqlen, device=device, dtype=torch.float32)
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
# will be large. Having it in bf16 will lose a lot of precision and cause the
# cos & sin output to change significantly.
# We want to recompute self.inv_freq if it was not loaded in fp32
if self.inv_freq.dtype != torch.float32:
inv_freq = self._compute_inv_freq(device=device)
else:
inv_freq = self.inv_freq
else:
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
inv_freq = self.inv_freq
# Don't do einsum, it converts fp32 to fp16 under AMP
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, inv_freq)
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
else:
power = (
torch.arange(
seqlen, dtype=self.scale.dtype, device=self.scale.device
)
- seqlen // 2
) / self.scale_base
scale = self.scale.to(device=power.device) ** rearrange(
power, "s -> s 1"
)
# We want the multiplication by scale to happen in fp32
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
def forward(
self,
qkv: torch.Tensor,
kv: Optional[torch.Tensor] = None,
seqlen_offset: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
qkv: (batch, seqlen, 3, nheads, headdim) if kv is none,
else it's just q of shape (batch, seqlen, nheads, headdim)
kv: (batch, seqlen, 2, nheads, headdim)
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
Most commonly used in inference when we have KV cache.
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
should pass in max_seqlen, which will update the cos / sin cache up to that length.
Apply rotary embedding *inplace* to qkv and / or kv.
"""
if cu_seqlens is not None:
assert max_seqlen is not None
seqlen = qkv.shape[1] if max_seqlen is None else max_seqlen
# if max_seqlen is not None:
# self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
# elif isinstance(seqlen_offset, int):
# self._update_cos_sin_cache(
# seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype
# )
if kv is None:
if self.scale is None:
return apply_rotary_emb_qkv_(
qkv,
self._cos_cached,
self._sin_cached,
interleaved=self.interleaved,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
use_flash_attn=self.use_flash_attn,
)
else:
return apply_rotary_emb_qkv_(
qkv,
self._cos_cached,
self._sin_cached,
self._cos_k_cached,
self._sin_k_cached,
interleaved=self.interleaved,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
use_flash_attn=self.use_flash_attn,
)
else:
q = qkv
q = apply_rotary_emb_func(
q,
self._cos_cached,
self._sin_cached,
interleaved=self.interleaved,
inplace=True,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
if self.scale is None:
kv = apply_rotary_emb_kv_(
kv,
self._cos_cached,
self._sin_cached,
interleaved=self.interleaved,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
else:
kv = apply_rotary_emb_kv_(
kv,
self._cos_k_cached,
self._sin_k_cached,
interleaved=self.interleaved,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
return q, kv
|