Edit model card

torgo_tiny_finetune_F01

This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2909
  • Wer: 24.6180

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.6321 0.83 500 0.3242 51.0187
0.1046 1.66 1000 0.4511 55.3480
0.099 2.49 1500 0.3225 31.5789
0.0656 3.32 2000 0.3007 50.6791
0.0506 4.15 2500 0.2984 27.6740
0.0383 4.98 3000 0.2853 23.6842
0.0296 5.8 3500 0.3449 32.3430
0.0198 6.63 4000 0.2730 26.6553
0.0192 7.46 4500 0.3049 49.2360
0.0136 8.29 5000 0.3279 25.8065
0.0121 9.12 5500 0.3082 23.8540
0.0101 9.95 6000 0.2722 25.5518
0.0065 10.78 6500 0.3414 32.0883
0.0062 11.61 7000 0.3140 22.9202
0.0053 12.44 7500 0.2601 24.7029
0.002 13.27 8000 0.2978 33.8710
0.0021 14.1 8500 0.2798 31.1545
0.0011 14.93 9000 0.3137 25.1273
0.0006 15.75 9500 0.2926 22.2411
0.0003 16.58 10000 0.2891 23.4295
0.0001 17.41 10500 0.2930 25.2122
0.0001 18.24 11000 0.2906 24.7878
0.0001 19.07 11500 0.2906 24.6180
0.0 19.9 12000 0.2909 24.6180

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jindaznb/torgo_tiny_finetune_F01

Finetuned
(1213)
this model