Edit model card

torgo_tiny_finetune_F03_frozen_encoder

This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0487
  • Wer: 34.9794

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.7886 0.85 500 0.0571 14.9520
0.0987 1.69 1000 0.0536 50.3429
0.0695 2.54 1500 0.0480 4.3896
0.0479 3.39 2000 0.0534 7.9561
0.0314 4.24 2500 0.0542 5.0754
0.0239 5.08 3000 0.0438 5.0754
0.0173 5.93 3500 0.0399 7.8189
0.0122 6.78 4000 0.0402 7.4074
0.0099 7.63 4500 0.0384 5.0754
0.0091 8.47 5000 0.0380 4.6639
0.0077 9.32 5500 0.0400 9.6022
0.0057 10.17 6000 0.0361 8.0933
0.0043 11.02 6500 0.0377 15.9122
0.0028 11.86 7000 0.0338 15.6379
0.0026 12.71 7500 0.0407 16.7353
0.0025 13.56 8000 0.0404 16.3237
0.0022 14.41 8500 0.0387 13.3059
0.0014 15.25 9000 0.0373 19.4787
0.0012 16.1 9500 0.0414 25.2401
0.0006 16.95 10000 0.0475 28.3951
0.0004 17.8 10500 0.0435 30.3155
0.0004 18.64 11000 0.0480 32.0988
0.0002 19.49 11500 0.0487 34.9794

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jindaznb/torgo_tiny_finetune_F03_frozen_encoder

Finetuned
(1213)
this model