Edit model card

RPGPT

GPT2 model trained on Role Playing datset.

Custom Tokens

The model containes 4 custom tokens to diffirentiate between Character, Context and Input data.
The Expected input to the model is therefore:

 "<|CHAR|>  Character Info <|CONTEXT|> Dialog or generation context <|INPUT|> User input"

The model is trained to include Response token to what we consider responce.
Meaning the model output will be:

 "<|CHAR|>  Character Info <|CONTEXT|> Dialog or generation context <|INPUT|> User input <|RESPONSE|> Model Response"

The actual output can be extracted by split function

 model_out = "<|CHAR|>  Character Info <|CONTEXT|> Dialog or generation context <|INPUT|> User input <|RESPONSE|> Model Response".split('<|RESPONSE|>')[-1]

Usage

For more easy use, cosider downloading scripts from my repo https://github.com/jinymusim/DialogSystem
Then use the included classes as follows.

from utils.dialog_model import DialogModel
from transformers import AutoTokenizer

model = DialogModel('jinymusim/RPGPT', resize_now=False)
tok = AutoTokenizer.from_pretrained('jinymusim/RPGPT')
tok.model_max_length = 1024

char_name ="James Smith"
bio="Age: 30, Gender: Male, Hobies: Training language models"
model.set_character(char_name, bio)

print(model.generate_self(tok)) # For Random generation
print(model.generate(tok, input("USER>").strip())) # For user input converasion 

Other wise use standard huggingface interface

from transformers import AutoTokenizer, AutoModelForCausalLM

model = AutoModelForCausalLM('jinymusim/RPGPT')
tok = AutoTokenizer.from_pretrained('jinymusim/RPGPT')
tok.model_max_length = 1024
char_name ="James Smith"
bio="Age: 30, Gender: Male, Hobies: Training language models"
context = []
input_ids = tok.encode(f"<|CHAR|> {char_name}, Bio: {bio} <|CONTEXT|> {' '.join(context} <|INPUT|> {input('USER>')}")

response_out = model.generate(input_ids,  
                                    max_new_tokens= 150,
                                    do_sample=True,
                                    top_k=50,
                                    early_stopping=True,
                                    eos_token_id=tokenizer.eos_token_id,
                                    pad_token_id=tokenizer.pad_token_id)

print(response_out)
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train jinymusim/RPGPT