Echotune_clean_test / README.md
jjyaoao's picture
update model card README.md
ac2885d
metadata
license: apache-2.0
base_model: facebook/data2vec-audio-base-960h
tags:
  - generated_from_trainer
datasets:
  - librispeech_asr
metrics:
  - wer
model-index:
  - name: jjyaoao/Echotune_clean_test
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: librispeech_asr
          type: librispeech_asr
          config: clean
          split: test
          args: clean
        metrics:
          - name: Wer
            type: wer
            value: 0.037368222891566265

jjyaoao/Echotune_clean_test

This model is a fine-tuned version of facebook/data2vec-audio-base-960h on the librispeech_asr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0679
  • Wer Ortho: 0.0369
  • Wer: 0.0374

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 34246.8
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0602 0.21 500 0.0476 0.0435 0.0439
0.0478 0.42 1000 0.0436 0.0411 0.0414
0.0492 0.63 1500 0.0443 0.0412 0.0415
0.0426 0.84 2000 0.0439 0.0401 0.0403
0.0386 1.05 2500 0.0445 0.0391 0.0395
0.0409 1.26 3000 0.0438 0.0394 0.0399
0.0437 1.47 3500 0.0444 0.0389 0.0393
0.0349 1.68 4000 0.0450 0.0392 0.0396
0.0469 1.89 4500 0.0442 0.0374 0.0378
0.033 2.1 5000 0.0454 0.0359 0.0363
0.0395 2.31 5500 0.0462 0.0363 0.0367
0.0321 2.52 6000 0.0457 0.0365 0.0369
0.0385 2.73 6500 0.0455 0.0355 0.0358
0.0378 2.94 7000 0.0449 0.0361 0.0366
0.0435 3.15 7500 0.0440 0.0355 0.0360
0.0436 3.36 8000 0.0466 0.0339 0.0344
0.0394 3.57 8500 0.0480 0.0345 0.0350
0.0448 3.78 9000 0.0478 0.0338 0.0342
0.0451 3.99 9500 0.0460 0.0355 0.0361
0.035 4.2 10000 0.0485 0.0369 0.0374
0.0387 4.41 10500 0.0487 0.0358 0.0362
0.0479 4.62 11000 0.0496 0.0363 0.0368
0.0456 4.83 11500 0.0491 0.0359 0.0365
0.0372 5.04 12000 0.0507 0.0355 0.0360
0.0395 5.25 12500 0.0526 0.0353 0.0356
0.0323 5.46 13000 0.0515 0.0368 0.0373
0.0354 5.67 13500 0.0524 0.0338 0.0343
0.031 5.88 14000 0.0531 0.0349 0.0357
0.0295 6.09 14500 0.0560 0.0344 0.0349
0.032 6.31 15000 0.0564 0.0364 0.0369
0.0462 6.52 15500 0.0548 0.0358 0.0365
0.0467 6.73 16000 0.0562 0.0347 0.0352
0.0437 6.94 16500 0.0573 0.0354 0.0359
0.0357 7.15 17000 0.0561 0.0359 0.0362
0.0297 7.36 17500 0.0602 0.0347 0.0351
0.0388 7.57 18000 0.0552 0.0341 0.0345
0.0392 7.78 18500 0.0533 0.0326 0.0331
0.0419 7.99 19000 0.0535 0.0343 0.0349
0.0326 8.2 19500 0.0614 0.0374 0.0378
0.0423 8.41 20000 0.0585 0.0341 0.0346
0.0326 8.62 20500 0.0586 0.0356 0.0362
0.0448 8.83 21000 0.0637 0.0371 0.0375
0.0763 9.04 21500 0.0607 0.0359 0.0364
0.0317 9.25 22000 0.0635 0.0400 0.0405
0.0326 9.46 22500 0.0603 0.0368 0.0372
0.0393 9.67 23000 0.0665 0.0380 0.0385
0.0341 9.88 23500 0.0664 0.0408 0.0413
0.0351 10.09 24000 0.0638 0.0384 0.0388
0.0412 10.3 24500 0.0687 0.0380 0.0384
0.0359 10.51 25000 0.0634 0.0379 0.0385
0.047 10.72 25500 0.0652 0.0373 0.0378
0.0346 10.93 26000 0.0671 0.0390 0.0396
0.0366 11.14 26500 0.0664 0.0387 0.0393
0.0359 11.35 27000 0.0669 0.0369 0.0374
0.0366 11.56 27500 0.0705 0.0358 0.0364
0.054 11.77 28000 0.0659 0.0383 0.0390
0.0335 11.98 28500 0.0679 0.0369 0.0374

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.0+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3