File size: 2,450 Bytes
ae0d22c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fdd385
ae0d22c
 
 
 
 
 
 
 
 
9fdd385
 
ae0d22c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6288c
de44280
 
ae0d22c
9fdd385
 
ae0d22c
 
de44280
9fdd385
2d6288c
ae0d22c
 
 
9fdd385
 
 
 
 
 
 
 
 
 
 
 
 
ae0d22c
 
 
 
2d6288c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: all
      split: train
      args: all
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.72
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-gtzan

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3187
- Accuracy: 0.72

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 11
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 2.2889        | 0.9912  | 28   | 2.2613          | 0.38     |
| 2.1553        | 1.9823  | 56   | 2.0953          | 0.56     |
| 1.9626        | 2.9735  | 84   | 1.8820          | 0.54     |
| 1.7839        | 4.0     | 113  | 1.7308          | 0.61     |
| 1.6749        | 4.9912  | 141  | 1.5920          | 0.64     |
| 1.5595        | 5.9823  | 169  | 1.5004          | 0.68     |
| 1.5266        | 6.9735  | 197  | 1.4368          | 0.68     |
| 1.4459        | 8.0     | 226  | 1.3776          | 0.71     |
| 1.4152        | 8.9912  | 254  | 1.3481          | 0.71     |
| 1.3766        | 9.9823  | 282  | 1.3242          | 0.72     |
| 1.3682        | 10.9027 | 308  | 1.3187          | 0.72     |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1