File size: 2,450 Bytes
ae0d22c 9fdd385 ae0d22c 9fdd385 ae0d22c 2d6288c de44280 ae0d22c 9fdd385 ae0d22c de44280 9fdd385 2d6288c ae0d22c 9fdd385 ae0d22c 2d6288c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.72
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3187
- Accuracy: 0.72
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 11
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 2.2889 | 0.9912 | 28 | 2.2613 | 0.38 |
| 2.1553 | 1.9823 | 56 | 2.0953 | 0.56 |
| 1.9626 | 2.9735 | 84 | 1.8820 | 0.54 |
| 1.7839 | 4.0 | 113 | 1.7308 | 0.61 |
| 1.6749 | 4.9912 | 141 | 1.5920 | 0.64 |
| 1.5595 | 5.9823 | 169 | 1.5004 | 0.68 |
| 1.5266 | 6.9735 | 197 | 1.4368 | 0.68 |
| 1.4459 | 8.0 | 226 | 1.3776 | 0.71 |
| 1.4152 | 8.9912 | 254 | 1.3481 | 0.71 |
| 1.3766 | 9.9823 | 282 | 1.3242 | 0.72 |
| 1.3682 | 10.9027 | 308 | 1.3187 | 0.72 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|